Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
t-SNE(途中)
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Ringa_hyj
September 22, 2020
Technology
0
74
t-SNE(途中)
Ringa_hyj
September 22, 2020
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
220
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
89
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
180
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
170
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
860
多次元尺度法MDS
ringa_hyj
0
320
因子分析(仮)
ringa_hyj
0
170
階層、非階層クラスタリング
ringa_hyj
0
140
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
540
Other Decks in Technology
See All in Technology
かわいい身体と声を持つ そういうものに私はなりたい
yoshimura_datam
0
460
The Engineer with a Three-Year Cycle - 2
e99h2121
0
190
AWS Network Firewall Proxyで脱Squid運用⁈
nnydtmg
1
160
新規事業 toitta におけるAI 機能評価の話 / AI Feature Evaluation in toitta
pokutuna
0
270
Git Training GitHub
yuhattor
1
270
CodeRabbit CLI + Claude Codeの連携について
oikon48
1
650
「AIでできますか?」から「Agentを作ってみました」へ ~「理論上わかる」と「やってみる」の隔たりを埋める方法
applism118
5
4.1k
KubeCon + CloudNativeCon NA ‘25 Recap, Extensibility: Gateway API / NRI
ladicle
0
130
AWS Devops Agent ~ 自動調査とSlack統合をやってみた! ~
kubomasataka
2
210
【Oracle Cloud ウェビナー】ランサムウェアが突く「侵入の隙」とバックアップの「死角」 ~ 過去の教訓に学ぶ — 侵入前提の防御とデータ保護 ~
oracle4engineer
PRO
2
220
BiDiってなんだ?
tomorrowkey
2
490
フロントエンド開発者のための「厄払い」
optim
0
170
Featured
See All Featured
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
370
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
43
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Ethics towards AI in product and experience design
skipperchong
2
180
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
130
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
Transcript
Visualizing Data using t -SNE
高次元データをt-senにより二次元空間上で可視化する hintonらの研究 stochastic neighbor embedding(SNE)の派生である その技術よりも異なるスケールのデータを可視化することに優れている 古典的な様々な手法もあるが、これらは2次元以上の空間を持っていたりする そのため高次元データを二次元におとすことが得意とは言えない PCA 1933
MDS 1952 などは線形空間での距離を離そうとする試みであるので、非線形空間での関係性には使えない さらに近年までいくつかのアプローチがあったが、どれも非線形な構造や、2次元に移すことができなかった 本論文のt-SNEは高次元のデータを二次元に落とせるだけでなく、 クラスタの存在や、非線形な関係を可視化することができる
そもそもSNEって? データ間のユークリッド距離をもとに類似性を計算する あるデータを正規分布の中心と考えた時、その周辺のデータがどれだけの確率で、その正規分布の 一員であるか、という確率を考える つまり、中心xiがあるという条件での、xjがおなじクラスタであるという条件付き確率である 近いデータならば確率は高く、離れたデータならば確率は低い なおかつ、点xiとxiの関係は0である
そもそもSNEって? 写像される空間上の点yについても同じように考える 点同士の距離は二乗距離を使う
そもそもSNEって? 高次元空間上で近い距離のデータが、低次元空間内でも、その性質を維持したままであることが 望ましいので、距離=条件付き確率 の値が近くなるように計算を行う (同じ仲間は低次元でも同じにしたい) 確率なのでKLダイバージェンスを考える あとはこれをgradient descentで最適化する
そもそもSNEって? ただし、KLダイバージェンスは対称でないので、 低次元空間上で十分に特徴を捉えられているとはいえない (iからみたjまでの距離の値と、jから見たiの距離の値がことなってしまう σのせい?) これを非対称と呼ぶ ゆえにSNEは空間上の局所的なデータ構造を保持することに特化している
そもそもSNEって? 距離を測る分散の決め方 高次元空間でのデータ点の密度は異なるので どのデータ点はどれだけ大きな分散(仲間とみなす範囲)をもっていればいいのか、 を考えなければならない これを探索するためには、preplexityを(ユーザーが)一定に定めて、適合するようなσを探す
そもそもSNEって? 勾配は以下のような簡単な式でもとまる yiとyjの距離で重みづけしたような式として解釈できる 高次元空間から低次元空間へのマッピング(初期はランダムな写像をつくっておく?)の 最適化では、慣性項(モーメンタム)をつけ、高速化と局所解に陥ることを避ける工夫をおこなう tはイテレーション数 ηは学習率 a(t)はモーメンタムの重み
そもそもSNEって? SNEは最適化する際に初期ノイズの設定や、イテレーション数、学習率、など 弄るべき項目が多く、 何度かパラメタを変えた最適化を試す必要がでてくる 最適化が難しい“crowding problem” t-SNEではガウス分布でなくスチューデントのt分布を用いる 対称なSNE crowding problemとその解決
t-SNEの最適化方法 の順で説明する
高次元空間の確率密度Pと低次元のQのKLダイバージェンスの和を最小化するのがSNEの話だった 和の代わりに、一点一点のダイバージェンスを小さくすることを考えてみよう 一点一点の類似度の計算は以下のようになる (低次元空間では、高次元では分散を固定、) ※高次元のデータに外れ値があった場合には問題が発生する lってなに?
SNEでは 非対称な問題があったので、これを対象にするため、以下の処理を行う 勾配は以下の様に簡単になる
crowding problem スイスロールのようなデータを考える 高次元データ空間での距離を二次元空間での距離に置き換えようとした場合 次元の呪いによって、二次元空間ではかなり離れた値になってしまう UNI-SNEをつかうことでcrowdingに対抗しよう
高次元空間ではガウシアンよりも裾の長いstudent t分布をつかうことで、 高次元上の距離をうまくはかってやろう
None
None
None
None
None
None