Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyLadies Stockholm Workshop
Search
Lynn Root
June 01, 2013
Technology
0
230
PyLadies Stockholm Workshop
Introduction to PyLadies + Intro to Python with Data Visualization
Lynn Root
June 01, 2013
Tweet
Share
More Decks by Lynn Root
See All by Lynn Root
The Design of Everyday APIs - PyCon 2024
roguelynn
1
3k
The Design of Everyday APIs
roguelynn
0
24k
Music Is Just Wiggly Air
roguelynn
0
400
Advanced asyncio: Solving Real-world Production Problems
roguelynn
5
9k
asyncio: We Did It Wrong
roguelynn
1
5.4k
Tracing, Fast & Slow: Digging into and improving your web service's performance
roguelynn
0
790
How to spy with Python: So easy, the NSA can do it!
roguelynn
2
1.9k
Spotify's Love/Hate Relationship with DNS
roguelynn
3
1.3k
Diversity: We're Not Done Yet
roguelynn
2
680
Other Decks in Technology
See All in Technology
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
250
Azure Well-Architected Framework入門
tomokusaba
1
350
ガバメントクラウドの概要と自治体事例(名古屋市)
techniczna
2
230
GoでもGUIアプリを作りたい!
kworkdev
PRO
0
130
そのWAFのブロック、どう活かす? サービスを守るための実践的多層防御と思考法 / WAF blocks defense decision
kaminashi
0
160
スタートアップにおけるこれからの「データ整備」
shomaekawa
2
360
Performance Insights 廃止から Database Insights 利用へ/transition-from-performance-insights-to-database-insights
emiki
0
200
AWS Control Tower に学ぶ! IAM Identity Center 権限設計の第一歩 / IAM Identity Center with Control Tower
y___u
0
100
社内お問い合わせBotの仕組みと学び
nish01
1
570
やる気のない自分との向き合い方/How to Deal with Your Unmotivated Self
sanogemaru
0
470
プロダクトのコードから見るGoによるデザインパターンの実践 #go_night_talk
bengo4com
1
2.4k
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
6
960
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
970
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
KATA
mclloyd
32
15k
How to train your dragon (web standard)
notwaldorf
96
6.3k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Music & Morning Musume
bryan
46
6.8k
Transcript
None
Lynn Root @roguelynn roguelynn.com
[email protected]
Lynn Root Software Engineer at Red Hat PyLadies of San
Francisco Python Software Foundation Board Member
Today’s Plan Part 1: Intro to PyLadies Part 2: Intro
to Python with Data Visualization Part 3: Mingle!
First things first! Thank you to Spotify for initiating this
idea, hosting me, and sponsoring the first PyLadies of Stockholm event!
International mentorship group Women + friends Python + Open Source
community Supported by sponsors, donors, and the PSF
Developers or Aspiring Full time or hobby Just in —
with Python
Workshops Development sprints Speaker series Hack nights
⚑ San Francisco ⚑ Los Angeles ⚑ Wash, DC ⚑
Atlanta ⚑ Seattle ⚑ Portland ⚑ San Diego ⚑ NYC ⚑ Nashville ⚑ Boston ⚑ Austin
⚑ Toronto ⚑ Montreal ⚑ Taiwan ⚑ Berlin ⚑ Brno
⚑ Vienna
And now...
Stockholm!!1! @PyLadiesSthlm
What does it take to lead a PyLadies group?
My story!
Ulterior motive: find an interested PyLady to continue PyLadies of
Stockholm
pyladies.com #pyladies on Freenode github.com/pyladies Questions? Interested folks?
Intro to Python with Data Visualization Adapted from newcoder.io/dataviz
Workshop Plan Introduction Setup your Machine Part 1: Parsing Data
Part 2: Graphing Data Part 3: Plotting on Google Maps
Introduction Project Goals Python Libraries
Project Parse data from a CSV file Create graphs Plot
on Google Maps
Goals Run & import a Python file Python’s data structures
Make simple graphs + maps
Python Libraries NumPy & matplotlib xml + Google Mapping
Follow along: http://newcoder.io/pdf
Setup your Machine Python git C compiler pip + virtualenv
virtualenvwrapper (Mac/Linux) Text Editor
Part 0: Setup Setup for Data Visualization
Setup the Project 1. Make project directory 2. Clone my
repository 3. Install dependencies
Break time
Part 1: parse.py Parsing our sample data
Part 1: parse.py 1. Module Setup 2. Attacking the Parse
Function 3. Using the Parse Function 4. Putting it into Action 5. Explore it further
Part 1.1: Module Setup 1. import 2. global variables
Part 1.2: Attacking 1. Scaffolding 2. Docstrings 3. Comments 4.
Code
Part 1.2.1: Scaffolding def parse(raw_file, delimiter): return parsed_data
Part 1.2.2: Doc Strings Documentation strings, or “docstrings”, are denoted
with triple quotes: """This function returns x."""
Part 1.2.2: Doc Strings def parse(raw_file, delimiter): """Parses a raw
CSV file to a JSON-like object.""" return parsed_data
Part 1.2.3: Comments def parse(raw_file, delimiter): ... # Open CSV
file # Read CSV file # Close CSV file # Build a data structure to return parsed_data return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Open CSV
file opened_file = open(raw_file) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Read CSV
file csv_data = csv.reader(opened_file, delimiter=delimiter) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Setup an
empty list parsed_data = [] ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Skip over
first line for headers fields = csv_data.next() ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Iterate over
each row, zip field -> value for row in csv_data: parsed_data.append(dict(zip(fields, row))) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Close the
CSV file opened_file.close() return parsed_data
Part 1.3: Using parse() def main(): # Call parse() and
give parameters new_data = parse(MY_FILE, ",") # Let’s see what the data looks like! print new_data
Part 1.3: Using parse() def main(): # Call parse() and
give parameters new_data = parse(MY_FILE, ",") # Let’s see what the data looks like! print new_data if __name__ == "__main__": main()
Part 1.4: Action Follow along with me in my terminal
Part 1.5: Explore Follow along with me in my terminal
Break time
Part 2: graph.py Graphing our sample data
Part 2: graph.py 1. Module Setup 2. Review the Parse
Function 3. Visualize Functions: 3.1 Visualize Days 3.2 Visualize Type
Part 2.1: Module Setup 1. order of import statements 2.
global variables
Part 2.2: Review parse() 1. Copying over parse function 2.
Same MY_FILE variable 3. Remove comments - still readable (python FTW!!1!)
Part 2.3: Visualize 1. Visualize Days 2. Visualize Type
Part 2.3.1: Visualize Days def visualize_days(): """Visualize data by day
of week""" # grab our parsed data data_file = parse(MY_FILE, ",")
Part 2.3.1: Visualize Days def visualize_days(): ... # create counter
counter = Counter(item["DayOfWeek"] for item in data_file) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # y-axis data
from counter data_list = [ counter["Monday"], counter["Tuesday"], # fill in the rest counter["Sunday"] ] ...
Part 2.3.1: Visualize Days def visualize_days(): ... # x-axis data
from counter, fill in the rest day_tuple = tuple(["Mon"],["Tues"],["Wed"]...) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # assign y-axis
data to matplotlib instance plt.plot(data_list) # assign x-axis labels plt.xticks(range(len(day_tuple)), day_tuple) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # Render the
plot! plt.show() ...
Part 2.3.1: Visualize Days def main(): visualize_days() if __name__ ==
"__main__": main()
Part 2.3.1: Visualize Days (DataVizProj) $ pwd new-coder/dataviz/tutorial_source/ (DataVizProj) $
python graph.py
Part 2.3.2: Visualize Type def visualize_type(): """Visualize data by category"""
# grab our parsed data data_file = parse(MY_FILE, ",")
Part 2.3.2: Visualize Type def visualize_type(): ... # create counter
counter = Counter(item["Category"] for item in data_file) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # create tuple
of labels for x-axis labels = tuple(counter.keys()) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # set where
labels hit x-axis xlocations = na.array(range(len(labels))) + .5 ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Assign labels
and tick locations to x-axis plt.xticks(locations + width / 2, labels, rotation=90) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # More room
for labels plt.subplots_adjust(bottom=0.4) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Make the
overall graph/figure larger plt.rcParams["figure.figsize"] = 12, 8 ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Finally! Render
plot! plt.show() ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Finally! Render
plot! plt.show() ... def main(): # visualize_days() visualize_type() if __name__ == "__main__": main()
Part 2.3.2: Visualize Type (DataVizProj) $ pwd new-coder/dataviz/tutorial_source/ (DataVizProj) $
python graph.py
Break time
Part 3: map.py Plotting our sample data on Google Maps
Part 3: map.py 1. Module Setup 2. Helper Functions 3.
Create G-Map
Part 3.1: Module Setup MOAR import statements
Part 3.2.1: Create Doc def create_document(title, description=""): """Create Overall KML
Document""" return doc
def create_document(title, description=""): ... # Initialize XML doc doc =
xml.dom.minidom.Document() ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Define as a KML-type XML
doc kml = doc.createElement("kml") ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes kml.setAttrebutes("xmlns",
"http://www.opengist.net/kml/2.2") doc.appendChild(kml) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes document
= doc.createElement("Document") kml.appendChild(document) docName = doc.createElement("title") document.appendChild(docName) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes (con’t)
docName_text = doc.createTextNode(title) docName.appendChild(docName_text) docDesc = doc.createElement("description") document.appendChild(docDesc) docDesc_text = doc.createTextNode(description) docDesc.appendChild(docDesc_text) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... return doc Part 3.2.1: Create Doc
Part 3.2.2: Create Place def create_placemark(address): """Generate KML Placemark for
given addr""" return doc
def create_placemark(address): ... # Initialize XML doc doc = xml.dom.minidom.Document()
... Part 3.2.2: Create Place
def create_placemark(address): ... # Create elements for Placemark and add
to doc pm = doc.createElement("Placemark") doc.appendChild(pm) name = doc.createElement("name") pm.appendChild(name) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t name_text = doc.createTextNode("%(name)s", % address)
name.appendChild(name_text) desc = doc.createElement("description") pm.appendChild(desc) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t desc_text = doc.CreateTextNode("Date: %(date)s, %(description)s",
address) desc.appendChild(desc_text) pt = doc.createElement("Point") pm.appendChild(pt) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t coords = doc.createElement("coordinates") pt.appendChild(coords) coords_text
= doc.createTextNode( "%(longitude)s, %(latitude)s" % address) coords.appendChild(coords_text) ... Part 3.2.2: Create Place
def create_placemark(address): ... return doc Part 3.2.2: Create Place
Part 3.3 Create G-Map! def create_gmap(data_file): """Create G-Map-readable doc"""
Part 3.3 Create G-Map! def create_gmap(data_file): ... # Create new
KML doc kml_doc = create_document("Crime map", "Plots of Recent SF Crime") ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # grab specific
DOM element (all one line) document = kml_doc.documentElement. getElementByTagName("Document")[0] ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # iterate over
data to create KML doc for line in data_file: ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: # Parse the data into a dict placemark_info = { "longitude": line["X"], "latitude": line["Y"], "name": line["Category"], "description": line["Descript"], "date": line["Date"] ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # Avoid null values for lat/long if placemark_info["longitude"] == "0": continue ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # parse line of data into KML-format placemark = create_placemark(placemark_info) ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # Adds the placemark to KML doc document.appendChild( placemark.documentElement) ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # write parsed
KML data to file with open("file_sf.kml", "w") as f: f.write(kml_doc.toprettyxml( intent=" ", encoding="UTF-8"))
Part 3.3 Create G-Map! def main(): data = p.parse(p.my_file, ",")
return create_gmap(data) if __name__ == "__main__": main()
Follow me on uploading to Google Maps Part 3.3 Create
G-Map!
Congrats!