Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyLadies Stockholm Workshop
Search
Lynn Root
June 01, 2013
Technology
0
230
PyLadies Stockholm Workshop
Introduction to PyLadies + Intro to Python with Data Visualization
Lynn Root
June 01, 2013
Tweet
Share
More Decks by Lynn Root
See All by Lynn Root
The Design of Everyday APIs - PyCon 2024
roguelynn
1
3k
The Design of Everyday APIs
roguelynn
0
24k
Music Is Just Wiggly Air
roguelynn
0
400
Advanced asyncio: Solving Real-world Production Problems
roguelynn
6
9.1k
asyncio: We Did It Wrong
roguelynn
1
5.4k
Tracing, Fast & Slow: Digging into and improving your web service's performance
roguelynn
0
820
How to spy with Python: So easy, the NSA can do it!
roguelynn
2
1.9k
Spotify's Love/Hate Relationship with DNS
roguelynn
3
1.3k
Diversity: We're Not Done Yet
roguelynn
2
680
Other Decks in Technology
See All in Technology
Logik: A Free and Open-source FPGA Toolchain
omasanori
0
150
DMMの検索システムをSolrからElasticCloudに移行した話
hmaa_ryo
0
370
DMARCは導入したんだけど・・・現場のつぶやき 〜 BIMI?何それ美味しいの?
hirachan
1
160
20251102 WordCamp Kansai 2025
chiilog
1
550
短期間でRAGシステムを実現 お客様と歩んだ生成AI内製化への道のり
taka0709
1
190
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
510
AIエージェントは「使う」だけじゃなくて「作る」時代! 〜最新フレームワークで楽しく開発入門しよう〜
minorun365
PRO
7
1.1k
窓口業務を生成AIにおまかせ!Bedrock Agent Coreで実現する自治体AIエージェント!
rayofhopejp
0
180
技術の総合格闘技!?AIインフラの現在と未来。
ebiken
PRO
0
160
Data Engineering Guide 2025 #data_summit_findy by @Kazaneya_PR / 20251106
kazaneya
PRO
8
1.5k
The Twin Mandate of Observability
charity
1
470
プロダクト開発と社内データ活用での、BI×AIの現在地 / Data_Findy
sansan_randd
1
830
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Pragmatic Product Professional
lauravandoore
36
7k
Why Our Code Smells
bkeepers
PRO
340
57k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
880
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Mobile First: as difficult as doing things right
swwweet
225
10k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Transcript
None
Lynn Root @roguelynn roguelynn.com
[email protected]
Lynn Root Software Engineer at Red Hat PyLadies of San
Francisco Python Software Foundation Board Member
Today’s Plan Part 1: Intro to PyLadies Part 2: Intro
to Python with Data Visualization Part 3: Mingle!
First things first! Thank you to Spotify for initiating this
idea, hosting me, and sponsoring the first PyLadies of Stockholm event!
International mentorship group Women + friends Python + Open Source
community Supported by sponsors, donors, and the PSF
Developers or Aspiring Full time or hobby Just in —
with Python
Workshops Development sprints Speaker series Hack nights
⚑ San Francisco ⚑ Los Angeles ⚑ Wash, DC ⚑
Atlanta ⚑ Seattle ⚑ Portland ⚑ San Diego ⚑ NYC ⚑ Nashville ⚑ Boston ⚑ Austin
⚑ Toronto ⚑ Montreal ⚑ Taiwan ⚑ Berlin ⚑ Brno
⚑ Vienna
And now...
Stockholm!!1! @PyLadiesSthlm
What does it take to lead a PyLadies group?
My story!
Ulterior motive: find an interested PyLady to continue PyLadies of
Stockholm
pyladies.com #pyladies on Freenode github.com/pyladies Questions? Interested folks?
Intro to Python with Data Visualization Adapted from newcoder.io/dataviz
Workshop Plan Introduction Setup your Machine Part 1: Parsing Data
Part 2: Graphing Data Part 3: Plotting on Google Maps
Introduction Project Goals Python Libraries
Project Parse data from a CSV file Create graphs Plot
on Google Maps
Goals Run & import a Python file Python’s data structures
Make simple graphs + maps
Python Libraries NumPy & matplotlib xml + Google Mapping
Follow along: http://newcoder.io/pdf
Setup your Machine Python git C compiler pip + virtualenv
virtualenvwrapper (Mac/Linux) Text Editor
Part 0: Setup Setup for Data Visualization
Setup the Project 1. Make project directory 2. Clone my
repository 3. Install dependencies
Break time
Part 1: parse.py Parsing our sample data
Part 1: parse.py 1. Module Setup 2. Attacking the Parse
Function 3. Using the Parse Function 4. Putting it into Action 5. Explore it further
Part 1.1: Module Setup 1. import 2. global variables
Part 1.2: Attacking 1. Scaffolding 2. Docstrings 3. Comments 4.
Code
Part 1.2.1: Scaffolding def parse(raw_file, delimiter): return parsed_data
Part 1.2.2: Doc Strings Documentation strings, or “docstrings”, are denoted
with triple quotes: """This function returns x."""
Part 1.2.2: Doc Strings def parse(raw_file, delimiter): """Parses a raw
CSV file to a JSON-like object.""" return parsed_data
Part 1.2.3: Comments def parse(raw_file, delimiter): ... # Open CSV
file # Read CSV file # Close CSV file # Build a data structure to return parsed_data return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Open CSV
file opened_file = open(raw_file) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Read CSV
file csv_data = csv.reader(opened_file, delimiter=delimiter) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Setup an
empty list parsed_data = [] ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Skip over
first line for headers fields = csv_data.next() ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Iterate over
each row, zip field -> value for row in csv_data: parsed_data.append(dict(zip(fields, row))) ... return parsed_data
Part 1.2.4: Code def parse(raw_file, delimiter): ... # Close the
CSV file opened_file.close() return parsed_data
Part 1.3: Using parse() def main(): # Call parse() and
give parameters new_data = parse(MY_FILE, ",") # Let’s see what the data looks like! print new_data
Part 1.3: Using parse() def main(): # Call parse() and
give parameters new_data = parse(MY_FILE, ",") # Let’s see what the data looks like! print new_data if __name__ == "__main__": main()
Part 1.4: Action Follow along with me in my terminal
Part 1.5: Explore Follow along with me in my terminal
Break time
Part 2: graph.py Graphing our sample data
Part 2: graph.py 1. Module Setup 2. Review the Parse
Function 3. Visualize Functions: 3.1 Visualize Days 3.2 Visualize Type
Part 2.1: Module Setup 1. order of import statements 2.
global variables
Part 2.2: Review parse() 1. Copying over parse function 2.
Same MY_FILE variable 3. Remove comments - still readable (python FTW!!1!)
Part 2.3: Visualize 1. Visualize Days 2. Visualize Type
Part 2.3.1: Visualize Days def visualize_days(): """Visualize data by day
of week""" # grab our parsed data data_file = parse(MY_FILE, ",")
Part 2.3.1: Visualize Days def visualize_days(): ... # create counter
counter = Counter(item["DayOfWeek"] for item in data_file) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # y-axis data
from counter data_list = [ counter["Monday"], counter["Tuesday"], # fill in the rest counter["Sunday"] ] ...
Part 2.3.1: Visualize Days def visualize_days(): ... # x-axis data
from counter, fill in the rest day_tuple = tuple(["Mon"],["Tues"],["Wed"]...) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # assign y-axis
data to matplotlib instance plt.plot(data_list) # assign x-axis labels plt.xticks(range(len(day_tuple)), day_tuple) ...
Part 2.3.1: Visualize Days def visualize_days(): ... # Render the
plot! plt.show() ...
Part 2.3.1: Visualize Days def main(): visualize_days() if __name__ ==
"__main__": main()
Part 2.3.1: Visualize Days (DataVizProj) $ pwd new-coder/dataviz/tutorial_source/ (DataVizProj) $
python graph.py
Part 2.3.2: Visualize Type def visualize_type(): """Visualize data by category"""
# grab our parsed data data_file = parse(MY_FILE, ",")
Part 2.3.2: Visualize Type def visualize_type(): ... # create counter
counter = Counter(item["Category"] for item in data_file) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # create tuple
of labels for x-axis labels = tuple(counter.keys()) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # set where
labels hit x-axis xlocations = na.array(range(len(labels))) + .5 ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Assign labels
and tick locations to x-axis plt.xticks(locations + width / 2, labels, rotation=90) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # More room
for labels plt.subplots_adjust(bottom=0.4) ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Make the
overall graph/figure larger plt.rcParams["figure.figsize"] = 12, 8 ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Finally! Render
plot! plt.show() ...
Part 2.3.2: Visualize Type def visualize_type(): ... # Finally! Render
plot! plt.show() ... def main(): # visualize_days() visualize_type() if __name__ == "__main__": main()
Part 2.3.2: Visualize Type (DataVizProj) $ pwd new-coder/dataviz/tutorial_source/ (DataVizProj) $
python graph.py
Break time
Part 3: map.py Plotting our sample data on Google Maps
Part 3: map.py 1. Module Setup 2. Helper Functions 3.
Create G-Map
Part 3.1: Module Setup MOAR import statements
Part 3.2.1: Create Doc def create_document(title, description=""): """Create Overall KML
Document""" return doc
def create_document(title, description=""): ... # Initialize XML doc doc =
xml.dom.minidom.Document() ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Define as a KML-type XML
doc kml = doc.createElement("kml") ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes kml.setAttrebutes("xmlns",
"http://www.opengist.net/kml/2.2") doc.appendChild(kml) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes document
= doc.createElement("Document") kml.appendChild(document) docName = doc.createElement("title") document.appendChild(docName) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... # Pull in common attributes (con’t)
docName_text = doc.createTextNode(title) docName.appendChild(docName_text) docDesc = doc.createElement("description") document.appendChild(docDesc) docDesc_text = doc.createTextNode(description) docDesc.appendChild(docDesc_text) ... Part 3.2.1: Create Doc
def create_document(title, description=""): ... return doc Part 3.2.1: Create Doc
Part 3.2.2: Create Place def create_placemark(address): """Generate KML Placemark for
given addr""" return doc
def create_placemark(address): ... # Initialize XML doc doc = xml.dom.minidom.Document()
... Part 3.2.2: Create Place
def create_placemark(address): ... # Create elements for Placemark and add
to doc pm = doc.createElement("Placemark") doc.appendChild(pm) name = doc.createElement("name") pm.appendChild(name) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t name_text = doc.createTextNode("%(name)s", % address)
name.appendChild(name_text) desc = doc.createElement("description") pm.appendChild(desc) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t desc_text = doc.CreateTextNode("Date: %(date)s, %(description)s",
address) desc.appendChild(desc_text) pt = doc.createElement("Point") pm.appendChild(pt) ... Part 3.2.2: Create Place
def create_placemark(address): ... # con’t coords = doc.createElement("coordinates") pt.appendChild(coords) coords_text
= doc.createTextNode( "%(longitude)s, %(latitude)s" % address) coords.appendChild(coords_text) ... Part 3.2.2: Create Place
def create_placemark(address): ... return doc Part 3.2.2: Create Place
Part 3.3 Create G-Map! def create_gmap(data_file): """Create G-Map-readable doc"""
Part 3.3 Create G-Map! def create_gmap(data_file): ... # Create new
KML doc kml_doc = create_document("Crime map", "Plots of Recent SF Crime") ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # grab specific
DOM element (all one line) document = kml_doc.documentElement. getElementByTagName("Document")[0] ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # iterate over
data to create KML doc for line in data_file: ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: # Parse the data into a dict placemark_info = { "longitude": line["X"], "latitude": line["Y"], "name": line["Category"], "description": line["Descript"], "date": line["Date"] ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # Avoid null values for lat/long if placemark_info["longitude"] == "0": continue ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # parse line of data into KML-format placemark = create_placemark(placemark_info) ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # loop continued
for line in data_file: ... # Adds the placemark to KML doc document.appendChild( placemark.documentElement) ...
Part 3.3 Create G-Map! def create_gmap(data_file): ... # write parsed
KML data to file with open("file_sf.kml", "w") as f: f.write(kml_doc.toprettyxml( intent=" ", encoding="UTF-8"))
Part 3.3 Create G-Map! def main(): data = p.parse(p.my_file, ",")
return create_gmap(data) if __name__ == "__main__": main()
Follow me on uploading to Google Maps Part 3.3 Create
G-Map!
Congrats!