Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Active galactic nuclei and blazars

Active galactic nuclei and blazars

Slides from a set of lectures about active galactic nuclei (AGNs) and blazars for advanced undergraduate and graduate students in physics and astronomy. Prepared and taught by Prof. Rodrigo Nemmen. The slides give a broad overview of observations and theory of AGN, with some emphasis on jetted AGNs (blazars) and high-energy electromagnetic radiation

The following topics are covered:
1. Historical perspective
2. Black hole physics
3. Observed AGN zoo
4. The ins of BHs: accretion
5. The outs: jets
6. Blazars

This was presented in two lectures with a total duration of 3 hours at the high energy astrophysics school in ICTP-SAIFR 2019. I was not able to cover all material available in the slides. https://www.ictp-saifr.org/school-on-high-energy-astrophysics/

To cite this presentation, please use: Nemmen 2019.
DOI: 10.6084/m9.figshare.9467927

Credit for the slides and figures belongs to Rodrigo Nemmen, unless otherwise stated. If you use my slides in your presentation, please include the proper credit.
https://rodrigonemmen.com

Rodrigo Nemmen

August 09, 2019
Tweet

More Decks by Rodrigo Nemmen

Other Decks in Research

Transcript

  1. Rodrigo Nemmen
    Universidade de São Paulo
    Active galactic
    nuclei and
    blazars

    View Slide

  2. Content of lectures
    Broad overview: observations and theory of
    active galactic nuclei (AGN)
    Some emphasis on jetted AGNs (blazars) and
    high-energy EM radiation

    View Slide

  3. Outline of lectures
    1.Historical perspective
    2.Black hole physics
    3.Observed zoo
    4.The ins of BHs: accretion
    5.The outs: jets
    6.Blazars

    View Slide

  4. References: theory
    Physical processes in active galactic nuclei. Blandford, R. in
    Active galactic nuclei Saas-Fee lecture notes
    Black holes, white dwarfs and neutron stars. Shapiro, S. L. &
    Teukolsky, S. A. (ch. 12, 14)
    More details
    Foundations of black hole accretion disk theory. Fragile, C. &
    Abramowicz, M.
    The Formation and Disruption of Black Hole Jets.
    Contoupoulos, I. et al. (ch. 3, 6, 7)

    View Slide

  5. References: observations
    Active galactic nuclei. Beckmann V. & Schrader, C.
    An introduction to active galactic nuclei: Classification and
    unification. New Ast. Rev. Tadhunter, C.
    Relativistic jets in active galactic nuclei. ARAA. Blandford, R.
    arXiv:1812.06025
    Gamma-Ray Observations of Active Galactic Nuclei. ARAA.
    Madejski, G. & Sikora, M.

    View Slide

  6. What is an active galactic nuclei?
    Presence of accreting, supermassive
    black hole at the center of a galaxy
    AGN

    View Slide

  7. View Slide

  8. View Slide

  9. What physics is necessary?
    general relativity
    Kerr spacetime
    (magneto)hydrodynamics
    aka MHD

    View Slide

  10. What physics is necessary?
    general relativistic MHD
    (GRMHD)
    at low accretion rates:
    general relativistic kinetic theory
    (GRK)

    View Slide

  11. Nature of AGNs: Accreting black holes
    • enormous free energy
    • can be extracted by particles/fields
    Gravitational energy source

    View Slide

  12. Challenges

    View Slide

  13. View Slide

  14. AGNs: multifaceted phenomenon
    (challenge #1)
    Depending on how you
    observe, AGNs look
    different
    Appearance varies with
    EM energy band (radio to
    gamma-rays)

    View Slide

  15. AGNs: multifaceted phenomenon
    (challenge #1)
    Depending on how you
    observe, AGNs look
    different
    Appearance varies with
    EM energy band (radio to
    gamma-rays)
    radio
    jet!
    thermal
    UV!
    dusty
    torus!
    hard
    X-rays!
    broad
    lines!
    rapid
    variability!

    View Slide

  16. Quasar light curves imply Δtvar < 1 light-week
    Size of system must satisfy size < cΔtvar
    variability timescale
    light-crossing radius
    ≈0.01 pc ~ 1000 AU

    View Slide

  17. Supermassive black holes (SMBHs) are
    extremely small on the sky
    Very hard to observe (challenge #2)
    SMBH
    Grapefruit
    <10-4 pc
    >10 kpc
    event horizon size
    galaxy size
    ~109

    View Slide

  18. AGNs easily outshine their host galaxies
    (challenge #3)
    this image: z ~ 0.2
    dL
    ~ 1 Gpc
    Hubble Space
    Telescope
    Bahcall+1997

    View Slide

  19. Steven Weinberg
    When I received my undergraduate
    degree — about a hundred years
    ago — the physics literature
    seemed to me a vast, unexplored ocean,
    every part of which I had to chart before
    beginning any research of my own. How
    could I do anything without knowing
    everything that had already been done?
    Fortunately, in my first year of graduate
    school, I had the good luck to fall into the
    hands of senior physicists who insisted, over
    my anxious objections, that I must start
    doing research, and pick up what I needed
    to know as I went along. It was sink or
    swim. To my surprise, I found that this
    works. I managed to get a quick PhD —
    though when I got it I knew almost nothing
    about physics. But I did learn one big
    thing: that no one knows everything, and
    you don’t have to.
    Another lesson to be learned,to continue
    work of many theoretical and experimental
    physicists has been able to sort it out, and
    put everything (well, almost everything)
    together in a beautiful theory known as
    the standard model.My advice is to go for the
    messes — that’s where the action is.
    My third piece of advice is probably the
    hardest to take. It is to forgive yourself for
    wasting time. Students are only asked to
    solve problems that their professors (unless
    unusually cruel) know to be solvable. In
    addition,it doesn’t matter ifthe problems are
    scientifically important — they have to be
    solved to pass the course. But in the real
    world,it’s very hard to know which problems
    are important, and you never know whether
    at a given moment in history a problem is
    solvable. At the beginning of the twentieth
    century,several leading physicists,including
    Lorentz and Abraham, were trying to work
    out a theory of the electron. This was partly
    in order to understand why all attempts to
    detect effects of Earth’s motion through the
    to spending most of your time not being
    creative, to being becalmed on the ocean of
    scientific knowledge.
    Finally, learn something about the history
    ofscience,or at a minimum the history ofyour
    own branch of science. The least important
    reason for this is that the history may actually
    be of some use to you in your own scientific
    work. For instance, now and then scientists
    are hampered by believing one of the over-
    simplified models of science that have
    been proposed by philosophers from Francis
    Bacon to Thomas Kuhn and Karl Popper.
    The best antidote to the philosophy of science
    is a knowledge ofthe history ofscience.
    More importantly, the history of science
    can make your work seem more worthwhile
    to you. As a scientist, you’re probably not
    going to get rich. Your friends and relatives
    Four golden lessons Scientist
    Advice to students at the start of
    their scientific careers.
    (1979 Nobel Prize, Physics)
    1. Learn to swim as you try
    not to drown. — No one
    knows everything, and you
    don’t have to.
    2. Aim for the rough water
    (messes). — that’s where the
    action is.
    3. Forgive yourself for wasting
    time.
    4. Learn the history of
    science. — at least of your
    own field.
    2003 Nature
    slide by Ken Nagamine

    View Slide

  20. Historical perspective on AGNs
    1783: Newtonian “dark stars” predicted
    1915: Einstein publishes his field equation
    1916: black hole solution derived from GR
    1918: "curious straight ray" in galaxy M87, "connected
    with the nucleus by a thin line of matter”—jets discovered
    1963: strong optical point source found at 3C 273
    nucleus—quasars discovered
    Early 1990s: HST finds SMBHs at centers of nearby
    galaxies
    Late 1990s: stellar orbits at Galactic Center—
    strongest BH case until 2015 (Sagittarius A*, 4×106 M⦿
    )
    Curtis 1918
    Schmidt+1963
    Ford+1994;
    Harms+1994;
    Ferrarese &
    Ford 2004
    Michell 1783
    Schwarzschild 1916
    Einstein 1915
    Genzel &
    Gillessen 2010

    View Slide

  21. Historical perspective on AGNs
    Late 1990s, early 2000s: M-σ relation—SMBHs and host
    galaxies are tightly connected
    2000: SMBHs disturb thermodynamics of entire galaxy
    clusters
    2003: Sloan Digital Sky Survey (SDSS) finds >100k AGNs
    2015: direct observation of gravitational waves from
    stellar-mass BHs
    2018a: 1st multimessenger observation from AGNs
    (blazar TXS 0506+056)
    2018b: GRAVITY resolves orbit at r = 7M (Sgr A*)
    2019: EHT images event horizon (M87*)
    McNamara+2000;
    Fabian 2012
    Abazajian+2003
    IceCube, Fermi LAT
    Collaborations
    Magorrian+1998;
    Kormendy & Ho 2013
    Abbott+2015
    Abuter+2018
    EHTC

    View Slide

  22. (new technologies)∙(engineering)
    = (new astronomical windows)
    (new observations)×(grad students)
    = paradigm change

    View Slide

  23. Pace of discovery is accelerating
    Future: immense discovery space
    awaiting
    We entered 2nd golden age of
    black hole (astro)physics
    General lessons from history

    View Slide

  24. Black hole physics

    View Slide

  25. A general relativity primer
    Einstein’s field equation
    Stress-energy
    Ricci curvature Metric
    Ricci
    scalar

    For a free particle:
    Geodesic equation
    Newtonian analogue Poisson equation
    spacetime
    curvature
    = constant × matter-energy
    R
    μν

    1
    2
    g
    μν
    R =
    8πG
    c4
    T
    μν
    Solution to field equation
    gives
    Line element
    Metric

    View Slide

  26. What is a black hole? Remarkable
    prediction of general relativity
    Normal object Black hole
    surface
    event horizon
    singularity
    from black hole primer for
    undergrads

    View Slide

  27. Event horizon: one-way membrane, matter/
    energy can fall in, but nothing gets out
    Black hole
    event horizon
    singularity
    Region inside event horizon
    causally cut-off from outside
    RS =
    2GM
    c2
    = 2.95

    M
    M

    km
    Radius of event horizon:
    Schwarzschild radius
    Gravitational radius:
    R
    g

    GM
    c2 Useful scale

    View Slide

  28. Growth of black holes
    If particles fall into the black hole
    M increases
    Schwarzschild radius RS = 2M increases
    surface area increases

    View Slide

  29. Growth of black holes
    If particles fall into the black hole
    M increases
    Schwarzschild radius RS = 2M increases
    surface area increases
    There is no limit to how big a BH can grow. From
    astrophysics:
    Mmin = 3.6 MSun
    Mmax ~ 1010 MSun

    View Slide

  30. What is a black hole?
    Once inside, nothing
    escapes
    Massive, compact
    astronomical object:
    gravity so strong that it
    traps everything that falls
    inside the event horizon

    View Slide

  31. What is a black hole?
    Massive, compact
    astronomical object:
    gravity so strong that it
    traps everything that falls
    inside the event horizon
    Once inside, nothing
    escapes
    Father-in-law
    Mother-
    in-law

    View Slide

  32. What is a black hole?
    Massive, compact
    astronomical object:
    gravity so strong that it
    traps everything that falls
    inside the event horizon
    Once inside, nothing
    escapes

    View Slide

  33. What is a black hole?
    Massive, compact
    astronomical object:
    gravity so strong that it
    traps everything that falls
    inside the event horizon
    Once inside, nothing
    escapes

    View Slide

  34. A black hole has no hair
    All black hole solutions of Einstein’s equation
    completely characterized by only three externally
    observable classical parameters:
    Mass M
    Spin: angular momentum J
    Charge Q
    J ≡ a
    GM2
    c
    −1 ≤ a ≤ 1 spin parameter
    No-hair theorem
    All other information (“hair”=metaphor) disappears behind
    the event horizon, therefore permanently inaccessible to
    external observers

    View Slide

  35. Types of black holes
    Mass M
    Spin a
    Charge Q
    Schwarzschild spacetime
    Kerr spacetime
    Reissner–Nordström spacetime

    View Slide

  36. Schwarzschild black hole
    Simplest black hole
    Spherically symmetric spacetime
    Relatively “easy” to handle analytically
    ds2 = −
    (
    1 −
    2M
    r )
    dt2 +
    (
    1 −
    2M
    r )
    −1
    dr2 + r2
    (dθ2 + sin2 θdϕ2
    )
    Schwarzschild geometry in Schwarzschild coordinates

    View Slide

  37. Kerr black hole
    Conservation of angular momentum leads to spinning
    black holes
    Rotational energy deforms spacetime → Kerr spacetime
    Kerr metric considerably more complex than
    Schwarzschild
    ds2 = −
    (
    1 −
    2Mr
    ρ2 )
    dt2 −
    4Mar sin2 θ
    ρ2
    dϕdt +
    ρ2
    Δ
    dr2 + ρ2dθ2
    +
    (
    r2 + a2 +
    2Mra2 sin2 θ
    ρ2 )
    sin2 θdϕ2
    a ≡ J/M, ρ2 ≡ r2 + a2 cos2 θ, Δ ≡ r2 − 2Mr + a2
    Boyer-Lindquist coords.

    View Slide

  38. Main parameters for astrophysical BHs
    Gravity
    Mass M
    Spin a∗
    Magnetic flux Φ
    Predict
    Energy output in all forms (erg/s or LEdd)
    (M⦿
    = 2×1033 g)
    (1 = max spin)
    units
    Accretion
    Mass accretion rate (M⦿
    /yr or )
    ˙
    MEdd
    AAACBXicdVDLSgMxFM3UV62vVpdugkVwIUNmbLXdFUVwI1SwD2iHksmkbWjmQZKplGHWfoVbXbkTt36HC//F9CGo6IELh3PuTe49bsSZVAi9G5ml5ZXVtex6bmNza3snX9htyjAWhDZIyEPRdrGknAW0oZjitB0Jin2X05Y7upj6rTEVkoXBrZpE1PHxIGB9RrDSUi9f6HqhSq7TXtIVPrz0vLSXLyIT2ZVyyYbItMuoalU1KSOrelqClolmKIIF6r38h36DxD4NFOFYyo6FIuUkWChGOE1z3VjSCJMRHtCOpgH2qTz2xiySM+oksytSeKhND/ZDoStQcKZ+H06wL+XEd3Wnj9VQ/vam4l9eJ1b9ipOwIIoVDcj8o37MoQrhNBLoMUGJ4hNNMBFMrw3JEAtMlA4up/P4Ohr+T5q2aZ2Y9k2pWDtfJJMF++AAHAELnIEauAJ10AAE3IEH8AiejHvj2XgxXuetGWMxswd+wHj7BMUUmPA=
    ˙
    M
    AAAB+XicdVDLSgMxFM3UV62vqks3wSK4kCEzbbHdFd24ESrYB7RDyWTSNjSTGZJMoQz9CLe6cidu/RoX/ovptIKKHggczrmHe3P8mDOlEXq3cmvrG5tb+e3Czu7e/kHx8KitokQS2iIRj2TXx4pyJmhLM81pN5YUhz6nHX9yvfA7UyoVi8S9nsXUC/FIsCEjWBup0w8ind7OB8USsut1VKlUIbKryHXdmiGo7NbqDnRslKEEVmgOih8mSZKQCk04VqrnoFh7KZaaEU7nhX6iaIzJBI9oz1CBQ6ougimLVUa9NLt8Ds+MGcBhJM0TGmbq93CKQ6VmoW8mQ6zH6re3EP/yeoke1ryUiTjRVJDlomHCoY7gogYYMEmJ5jNDMJHMnA3JGEtMtCmrYPr4+jT8n7Rd2ynb7l2l1LhaNZMHJ+AUnAMHXIIGuAFN0AIETMADeARPVmo9Wy/W63I0Z60yx+AHrLdP1nGUnQ==

    View Slide

  39. Main problem in BH
    astrophysics
    AGN(t) = f(M, a
    *
    ,
    ·
    M)

    View Slide

  40. Eddington luminosity LEdd
    M
    Luminosity L
    from central object
    photon
    field

    View Slide

  41. Eddington luminosity LEdd
    p
    e-
    r
    Luminosity L
    from central object
    When is the radiation strong enough to prevent
    accretion of particles?
    photon
    field

    View Slide

  42. F
    rad
    = F
    g
    Prad =
    Frad
    A
    =
    F
    c
    ) Frad =
    FA
    c
    ) Frad =
    L
    4⇡r2
    T
    c
    AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0=
    Solve this to get LEdd:
    radiation force
    on an electron
    flux
    area

    View Slide

  43. F
    rad
    = F
    g
    Prad =
    Frad
    A
    =
    F
    c
    ) Frad =
    FA
    c
    ) Frad =
    L
    4⇡r2
    T
    c
    AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0=
    Solve this to get LEdd:
    radiation force
    on an electron
    flux
    area

    View Slide

  44. F
    rad
    = F
    g
    Prad =
    Frad
    A
    =
    F
    c
    ) Frad =
    FA
    c
    ) Frad =
    L
    4⇡r2
    T
    c
    AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0=
    Solve this to get LEdd:
    radiation force
    on an electron
    F
    g
    =
    GM(m
    e
    + m
    p
    )
    r2

    GMm
    p
    r2
    flux
    area
    why?

    View Slide

  45. F
    rad
    = F
    g
    Prad =
    Frad
    A
    =
    F
    c
    ) Frad =
    FA
    c
    ) Frad =
    L
    4⇡r2
    T
    c
    AAACf3icjZFPa9swGMZlr1vTtNvS7diLaCgtbAQ7K7Q7FJIORg89pCP/IM7Ma0VORCXbSPJGEP4a/WC99bvsMCUxbZrusBcED7/30b/njTLOlPa8B8d9tfX6zXZlp7q79/bd+9r+h75Kc0loj6Q8lcMIFOUsoT3NNKfDTFIQEaeD6Pbboj/4RaViadLV84yOBUwTFjMC2qKwdtcJTSAFljApLoJYAjHfn0hh2o+0MKTAwQ82nWmQMv2N13z4Apcu3P4v33VhTnGQMSx/NouSBYpNBYTdxQFhre41vGXhl8IvRR2V1Qlr98EkJbmgiSYclBr5XqbHBqRmhNOiGuSKZkBuYUpHViYgqBqbZX4FPrJkguNU2pVovKTrOwwIpeYisk4BeqY2ewv4r94o1/H52LAkyzVNyOqiOOdYp3gxDDxhkhLN51YAkcy+FZMZ2DC0HVnVhuBvfvml6Dcb/pdG8+a03ros46igA3SITpCPzlALXaEO6iGC/jiHzifns+u4x27D9VZW1yn3fETPyv36F4Dmwm0=
    Solve this to get LEdd:
    radiation force
    on an electron
    F
    g
    =
    GM(m
    e
    + m
    p
    )
    r2

    GMm
    p
    r2
    L
    Edd
    =
    4πGMm
    p
    c
    σT
    = 1.3 × 1038
    (
    M
    M⊙ )
    erg s−1
    flux
    area
    why?

    View Slide

  46. p
    e-
    M
    photon
    field
    Eddington luminosity: importance
    L > L
    Edd

    View Slide

  47. Eddington luminosity: importance
    A system radiating at L > LEdd can halt mass
    accretion due to strong radiation pressure
    Roughly maximal luminosity that can be powered
    by accretion (if spherical symmetry)
    Useful luminosity unit in BH astrophysics

    View Slide

  48. Eddington accretion rate
    • Assume an engine radiating at L = LEdd
    • If it were converting mass to radiative
    energy with efficiency η

    View Slide

  49. L
    Edd
    = η
    ·
    M
    Edd
    c2 ⇒
    ·
    M
    Edd

    L
    Edd
    ηc2
    • Assume an engine radiating at L = LEdd
    • If it were converting mass to radiative
    energy with efficiency η
    usually η = 0.1
    Eddington accretion rate

    View Slide

  50. L
    Edd
    = η
    ·
    M
    Edd
    c2 ⇒
    ·
    M
    Edd

    L
    Edd
    ηc2
    • Assume an engine radiating at L = LEdd
    • If it were converting mass to radiative
    energy with efficiency η
    = 3
    (
    0.1
    η ) (
    M
    108M⊙ )
    M

    yr−1
    Useful accretion rate
    unit in BH astrophysics
    usually η = 0.1
    Eddington accretion rate

    View Slide

  51. Eddington time tEdd
    ·
    M =
    dM
    dt
    =
    ·
    M
    Edd

    dM
    dt
    =
    M
    tEdd
    Assume BH accreting at Eddington rate
    also known as Salpeter time tS

    View Slide

  52. Eddington time tEdd
    ·
    M =
    dM
    dt
    =
    ·
    M
    Edd

    dM
    dt
    =
    M
    tEdd
    Assume BH accreting at Eddington rate
    t
    Edd

    ηcσ
    T
    4πGmp
    = 4 × 107
    (
    η
    0.1 )
    yr
    Useful timescale
    also known as Salpeter time tS

    View Slide

  53. Useful websites and apps for
    grad students
    arxiv.org
    ui.adsabs.harvard.edu
    sci-hub.tw
    voxcharta.org
    Find papers Manage papers
    Mendeley, bibdesk,
    Papers, Jabref

    View Slide

  54. Pro tips
    Organize papers using convention:
    1. Folders named after categories
    2. Filename: author>
    3. Use a desktop search app to find (spotlight,
    cerebro, albert)

    View Slide

  55. View Slide

  56. View Slide

  57. Important lengths
    risco: Innermost stable circular orbit
    from now on, G = c = 1
    r
    isco
    = 6M for a

    = 0

    View Slide

  58. Misner, Thorne & Wheeler
    Effective potential for orbits around a Schwarzschild black hole
    E =
    1
    2 (
    dr
    dτ)
    2
    + V
    eff
    V
    eff
    r/M
    effective
    potential
    face-on view of accretion disk
    innermost stable
    circular orbit
    6M
    edge-on view

    View Slide

  59. Misner, Thorne & Wheeler
    Effective potential for orbits around a Schwarzschild black hole
    E =
    1
    2 (
    dr
    dτ)
    2
    + V
    eff
    V
    eff
    r/M
    effective
    potential
    innermost stable
    circular orbit
    face-on view of accretion disk
    face-on view of accretion disk
    risco

    View Slide

  60. Important radii
    risco: Innermost stable circular orbit
    from now on, G = c = 1
    r
    isco
    = 6M for a

    = 0
    rc: photon capture radius
    also called photon sphere or photon ring
    r
    c
    = 3M
    seen from ∞
    27M
    apparent radius
    for a

    = 0

    View Slide

  61. Schwarzschild radius
    photon ring
    light rays
    https://www.codeproject.com/Articles/994466/Ray-Tracing-a-Black-Hole-in-Csharp

    View Slide

  62. Dependence of radii on BH spin
    Bardeen+1972
    a∗

    View Slide

  63. Dependence of radii on BH spin
    Bardeen+1972
    a∗
    horizon
    equator
    photon capture
    isco
    +
    -
    -
    +

    View Slide

  64. Important timescales
    Light-crossing t
    l
    =
    r
    c
    = 2
    (
    r
    104M ) (
    M
    108M⊙ )
    months
    as a function of distance r from 108 M⦿
    BH
    Sound-crossing
    t
    s
    =
    r
    cs
    = 700
    (
    r
    104M ) (
    M
    108M⊙ ) (
    T
    105K )
    −1/2
    years
    Accretion
    t
    acc
    =
    r
    vr
    = 107
    (
    α
    0.1 )
    −4/5
    (
    r
    104M)
    5/4
    (
    M
    108M⊙ )
    3/2
    (
    ·
    M
    0.1
    ·
    MEdd
    )
    −3/10
    years
    ~ viscous time
    Free-fall t
    ff
    =
    (
    GM
    2r3 )
    −1/2
    = 23
    (
    r
    104M)
    3/2
    (
    M
    108M⊙ )
    years
    ~ dynamical time

    View Slide

  65. Gravitational sphere of
    influence of SMBHs
    r
    sph

    GM
    σ2
    = 5
    (
    M
    108M⊙ ) (
    σ
    300 km s−1 )
    −2
    pc
    stellar velocity
    dispersion (bulge)

    View Slide

  66. Gravitational sphere of
    influence of SMBHs
    r
    sph

    GM
    σ2
    = 5
    (
    M
    108M⊙ ) (
    σ
    300 km s−1 )
    −2
    pc
    stellar velocity
    dispersion (bulge)
    rS / rsph = 10-6
    Some size ratios
    rgal / rsph > 104
    rbulge / rsph = 200

    View Slide

  67. Efficiency of release of free
    energy from BH accretion disks
    r → ∞
    How much orbital energy lost by particle when it
    disappears behind event horizon?
    1st order estimate of Lacc

    View Slide

  68. How much orbital energy lost by one particle?
    E
    acc
    = U(r → ∞) − U(r
    surface
    ) gravitational
    potential
    energy
    =
    GMm
    rsurface

    View Slide

  69. E
    acc
    = U(r → ∞) − U(r
    surface
    )
    How much orbital energy lost by one particle?
    gravitational
    potential
    energy
    =
    GMm
    rsurface
    Energy lost by continuous inflow of particles?
    ·
    m =
    dm
    dt
    dE
    acc
    dt
    =
    GM ·
    m
    rsurface
    ⇒ L =
    GM ·
    m
    rsurface

    View Slide

  70. E
    acc
    = U(r → ∞) − U(r
    surface
    )
    How much orbital energy lost by one particle?
    gravitational
    potential
    energy
    =
    GMm
    rsurface
    Energy lost by continuous inflow of particle?
    ·
    m =
    dm
    dt
    dE
    acc
    dt
    =
    GM ·
    m
    rsurface
    ⇒ L =
    GM ·
    m
    rsurface
    Luminosity released from accretion
    L = η ·
    mc2 ⇒ η =
    L
    ·
    mc2
    =
    GM
    rsurface
    c2
    maximized
    for compact
    objects

    View Slide

  71. E
    acc
    = U(r → ∞) − U(r
    surface
    )
    How much orbital energy lost by one particle?
    gravitational
    potential
    energy
    =
    GMm
    rsurface
    Energy lost by continuous inflow of particle?
    ·
    m =
    dm
    dt
    dE
    acc
    dt
    =
    GM ·
    m
    rsurface
    ⇒ L =
    GM ·
    m
    rsurface
    Luminosity released from accretion
    L = η ·
    mc2 ⇒ η =
    L
    ·
    mc2
    =
    GM
    rsurface
    c2
    maximized
    for compact
    objects

    View Slide

  72. For a Schwarzschild BH
    η = 0.5 incorrect
    Newtonian
    value
    Correct GR result
    η = V
    eff
    (∞) − V
    eff
    (6M)
    = − V
    eff
    (6M) =
    1
    18
    = 0.06

    View Slide

  73. Itaipu Dam − 14 GW
    ⌘ =
    mgh
    mc2
    = 10 14

    h
    100 m

    View Slide

  74. Nuclear fusion
    ⌘ = 0.008 ⇥ 0.1 ⇠ 8 ⇥ 10 4
    Tsar bomba

    View Slide

  75. face-on view of accretion disk
    ISCO radius depends on the BH spin
    face-on view of accretion disk
    a
    *
    = 0 a
    *
    = 0.998
    Disk is:
    hotter
    larger surface area
    higher velocities
    edge-on view

    View Slide

  76. UO
    aim
    o 0.2 0.5 0.7 0.6 0.9 0.95 0.96 1
    mO.
    (3.12)
    Fig.3.2. Efficiency of energy release by gas accreting through a thin accretion disk onto
    a spinning black hole. The quantity plotted is 1 - em. as a function of the hole angular
    η
    Blandford 1990
    a
    *
    η=0.42
    at
    a∗
    =0.998

    View Slide

  77. Black hole spin leaves imprint
    on accretion disk
    Faster, hotter, brighter
    but gravitational redshift

    View Slide

  78. AGN zoo

    View Slide

  79. Supermassive
    106-1010 solar masses
    one in every galactic nucleus
    5-80 solar masses
    ~107 per galaxy
    Stellar black holes
    black holes

    View Slide

  80. Supermassive
    106-1010 solar masses
    one in every galactic nucleus
    5-80 solar masses
    ~107 per galaxy
    Stellar black holes
    ~1 Mpc ~100 kpc
    Active galactic nuclei
    Quasars
    Radio
    galaxies
    black holes
    Gamma-
    ray bursts
    Microquasars
    1 pc = 3×1013 km
    Blazars
    Binary systems

    View Slide

  81. Phenomenology of active galactic nuclei
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    based on Tadhunter+08
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines

    View Slide

  82. Phenomenology of active galactic nuclei
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    based on Tadhunter+08
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines
    Type I Type II

    View Slide

  83. λ (Angstrom)
    AGNs with and without broad emission
    lines
    BH’s gravity
    accelerating the
    gas to v>1000 km/s
    but half of AGNs
    show narrower
    lines
    Flux (arbitrary units)

    View Slide

  84. λ (Angstrom)
    6.7. AGN unification 139
    Ionization cone
    Radio jet
    NLR clouds illuminated
    by central source
    Black hole accretion disk
    And BLR
    Clumpy dusty
    torus
    Type-II AGNs
    Radio loud
    Radio quiet
    Type-I AGNs
    Radio loud
    Radio quiet
    Blazars
    Type I
    Type II
    Unified model of AGNs

    View Slide

  85. Phenomenology of active galactic nuclei
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines

    View Slide

  86. Phenomenology of active galactic nuclei
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Radio-quiet
    Radio-loud
    Radiogalaxies (FRI,
    FRII)
    radio-loud quasar
    blazars (BL Lac, FSRQ)
    Seyferts
    Radio-quiet quasar

    View Slide

  87. Phenomenology of active galactic nuclei
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Radio-quiet
    Radio-loud
    10% of AGNs are
    radio-loud

    View Slide

  88. Phenomenology of active galactic nuclei
    based on Tadhunter+08
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines

    View Slide

  89. Phenomenology of active galactic nuclei
    based on Tadhunter+08
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines
    Low-
    luminosity
    AGNs

    View Slide

  90. Phenomenology of active galactic nuclei
    based on Tadhunter+08
    8 m VLT reveals a
    um of the elliptical
    mplication is that
    cted in scattered
    cases, spectropo-
    ontrast of the scat-
    m and narrow line
    trum in polarized
    en et al., 1999).
    ons are static over
    a Sy1). However,
    ve only been pos-
    od is short relative
    07 to 108 yr). Thus
    ons over their life-
    nt over the short
    e AGN are known
    mescales of years
    of NGC4151 and
    een Sy1 and Sy2
    and Perez, 1984;
    nuclei have been
    similar timescale
    1996). By analogy
    we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    Nuclear lum
    inosity
    Radio power
    Broad / Narrow
    lines
    Low-
    luminosity
    AGNs
    Quasars

    View Slide

  91. ken on the 8 m VLT reveals a
    llar continuum of the elliptical
    A further complication is that
    may be detected in scattered
    ight. In such cases, spectropo-
    nhance the contrast of the scat-
    ar continuum and narrow line
    tic Sy1 spectrum in polarized
    d, 1985; Cohen et al., 1999).
    t classifications are static over
    Sy1 always a Sy1). However,
    ts of AGN have only been pos-
    is time period is short relative
    of AGN ($ 107 to 108 yr). Thus
    e classifications over their life-
    eing apparent over the short
    n fact, some AGN are known
    hanges on timescales of years
    the cases of NGC4151 and
    anged between Sy1 and Sy2
    ars (Penston and Perez, 1984;
    me LINER nuclei have been
    eristics on a similar timescale
    ower et al., 1996). By analogy
    ry systems, we must also be
    the diversity in their properties, some of the most important in-
    sights into the nature of AGN have been gained by considering
    ?
    ˙
    M
    / ˙
    M
    E
    dd
    Phenomenology of active galactic nuclei
    based on Tadhunter+08
    orientation
    orientation
    TOR = f( ˙
    M)
    Nuclear lum
    inosity
    Radio power
    Broad /
    Narrow lines
    spin a
    magnetic
    flux Φbh

    View Slide

  92. Issues with the AGN unification
    proposal

    View Slide

  93. Current compilation of spin constraints
    D






    0.(.0h)

    Many rapidly spinning BHs. More
    slowly spinning population may
    emerge at higher masses.
    Reynolds (2013; arXiv:1302.3260)
    … also see Sesana et al. (2014)
    BH spin distribution from X-ray
    spectroscopy (only radio quiet AGN)
    106 107 108 109
    Black hole mass (MSun)
    cf. also Brenneman+13; King+13
    Reynolds+13
    Spin a
    XMM-Newton + Suzaku
    Why no jets?

    View Slide

  94. Sikora+2007
    log Lbol/LEdd
    (radio
    loudness)
    BLRG
    RL quasars
    FR I
    PG
    quasars
    Sy + LINER
    The BH knows about its host galaxy
    Radio louds
    Radio quiets

    View Slide

  95. log Lbol/LEdd
    (radio
    loudness)
    Radio quiets
    ellipticals
    spirals
    spin~1?
    spin<0.3 ?
    Wilson & Colbert 95
    Moderski+96,98
    Tchekhovskoy+10
    Radio louds
    Sikora+2007
    The BH knows about its host galaxy

    View Slide

  96. Basic equations for BH
    accretion

    View Slide

  97. D⇢
    Dt
    + ⇢r · v = 0

    Dv
    Dt
    = rp ⇢r + r · T

    D(e/⇢)
    Dt
    = pr · v + T2/µ
    Conservation
    of
    Mass
    Momentum
    Energy
    D⇢
    Dt
    + ⇢r · v = 0

    Dv
    Dt
    = rp ⇢r + r · T

    D(e/⇢)
    Dt
    = pr · v + T2/µ r · Frad
    r · q
    D⇢
    Dt
    + ⇢r · v = 0

    Dv
    Dt
    = rp ⇢r + r · T

    D(e/⇢)
    Dt
    = pr · v + T2/µ r · Frad
    r · q
    Equations of Newtonian hydrodynamics
    Plus:
    equation of state
    opacity description
    viscosity
    taken from accretion lecture at “bh
    gastrophysics” course
    Rate of change
    “following the fluid”

    View Slide

  98. General Relativistic Hydrodynamics
    • The general relativistic hydrodynamics equations are obtained from the local
    conservation laws of the stress-energy tensor, Tµν (the Bianchi identities), and of the
    matter current density Jµ (the continuity equation):
    rµ(⇢uµ) = 0
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    rµTµ⌫ = 0
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    equations of motion
    (µ = 0, ..., 3)
    AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc=
    AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc=
    AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc=
    AAAC3HichVFLTxRBEP4YEXBFWPVi4mXCggFCJjVw0JhoSLhw5OECCQubmdnepcO8nMdGnHDzpPEKMZ4k4UD4ERy4wA/wwE8wHjHx4oGa3gk+iNCT6ar6ur7qr6vs0JVxQnTWpd3qvt3T23endLf/3sBg+f6DpThII0dUncANohXbioUrfVFNZOKKlTASlme7YtnenMnPl9siimXgv0q2QrHmWS1fNqVjJQzVy1M1W7Skn4nXqULGt0ujNS/VX+g0oRuGMaFPjZVqwm/8kVEvV8ggtfSrjlk4FRRrLiifooYGAjhI4UHAR8K+Cwsxf6swQQgZW0PGWMSeVOcC2ygxN+UswRkWo5u8tzhaLVCf47xmrNgO3+LyHzFTxwh9pQM6pxM6pG/067+1MlUj17LF1u5wRVgffP9o8eeNLI9tgo3frGs1J2jimdIqWXuokPwVTofffrt7vvh8YSR7Qnv0nfV/oTM65hf47R/O/rxY+KyqN5jTZNtm66DCHcw4yrUHeKN8W3WicalOx7DKG+Z7uKs8RPPfkV11liYNkwxzfrIy/bIYZx8eYwijXOkppjGLOVRZwScc4QSn2rr2Tvugfeykal0F5yH+WtrOBamXqKc=
    : covariant derivative associated with the four
    dimensional spacetime metric

    AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH
    AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH
    AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH
    AAAC1XichVE9TxRRFD2MIrCgrNiQ2GxcMMaYzR0aDQUhsaHka1kShmxmZt+uL8y8GeZjI0y2MxY2JDYWVJBQGP4ALdroD6DgJxBKTGwsvPN24hdR32Teve/ce+47714n9GScEJ0PGDduDt4aGh4pjY7dvjNevjuxFgdp5Iq6G3hBtO7YsfCkEvVEJp5YDyNh+44nGs7W8zze6IooloFaTXZCsenbHSXb0rUThprlJ5YjOlJlYjvVyONeyVK249lNy09LllCtX0LNcpVqpFflumMWThXFWgzKn2GhhQAuUvgQUEjY92Aj5m8DJgghY5vIGIvYkzou0EOJuSlnCc6wGd3ivcOnjQJVfM5rxprt8i0e/xEzK5imM3pPV/SJjumCvv21VqZr5Fp22Dp9rgib428mV77+l+WzTfDiJ+ufmhO08Uxrlaw91Ej+CrfP7+6+u1qZXZ7OHtIhXbL+Azqnj/wC1f3iHi2J5X1dvcWcNtsuWxdV7mDGp1x7gJfad3QnWj/UVTCl86b4Hu4qD9H8c2TXnbWZmkk1c2mmOj9XjHMY9/EAj7jSU8xjAYuos4K3OMEpPhgNo2e8Ml73U42BgnMPvy1j7ztMT6jH
    gµ⌫
    AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU=
    AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU=
    AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU=
    AAAC1nichVE7T9xAEP4wecDlwQFNpDSnHERRpJzGNEEUERJNSh45OAmjk+3bu6yw18aPE8S6dFGkVJFSUFARiQLxC2hDk/yAFPyEKCWR0lAw3rOSAIKs5Z3Zb+ab/XbGCT0ZJ0THA8bgjZu3bg8Nl+7cvXd/pDw6thwHaeSKuht4QdRw7Fh4Uol6IhNPNMJI2L7jiRVnfS6Pr3RFFMtAvUq2QrHm2x0l29K1E4aa5WeWIzpSZWIj1cjTXqnTzCw/rVgq7ZUsoVr/xJrlKtVIr8plxyycKoo1H5S/wUILAVyk8CGgkLDvwUbM3ypMEELG1pAxFrEndVyghxJzU84SnGEzus57h0+rBar4nNeMNdvlWzz+I2ZWMEnfaZ9O6Csd0A86vbJWpmvkWrbYOn2uCJsjHx4s/f4vy2eb4PVf1rWaE7QxrbVK1h5qJH+F2+d332yfLM0sTmaP6TP9ZP27dExH/ALV/eXuLYjFHV29xZw22y5bF1XuYManXHuATe07uhOtP+oqmNB5E3wPd5WHaF4c2WVneapmUs1cmKrOvijGOYSHeIQnXOk5ZvES86izgk84xBccGQ3jrfHOeN9PNQYKzjjOLePjGWYuqTU=
    • The density current is given by Jµ = ⇢uµ
    AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ
    AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ
    AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ
    AAAC3XichVFLSxxBEP4cEx9rohtzEbwMrobgYakRQQkYhFwkJ1+rgmOWmdnetXFezmPRDB5zCZKroCcDOYT8iUAuMfcc/AniUSGXHFLTO+QliT1MV9XX9VV/XWWHrowTovMurfvO3Z7evv7SwL37g0PlB8NrcZBGjqg5gRtEG7YVC1f6opbIxBUbYSQsz3bFur3zLD9fb4soloG/muyHYsuzWr5sSsdKGKqXp01btKSfid1UIZMHpecvTC/V53Qz2g70NA9KpvAbv6XUyxWqklr6TcconAqKtRiUz2CigQAOUngQ8JGw78JCzN8mDBBCxraQMRaxJ9W5wAFKzE05S3CGxegO7y2ONgvU5zivGSu2w7e4/EfM1DFBX+k9XdFn+kAX9P2ftTJVI9eyz9bucEVYH3o9svLtVpbHNsH2L9Z/NSdoYlZplaw9VEj+CqfDb788ulp5sjyRPaK3dMn6T+mcPvEL/Pa1825JLJ+o6g3mNNm22TqocAczjnLtAfaUb6tONH6q0zGu8sb5Hu4qD9H4e2Q3nbWpqkFVY2mqMv+0GGcfRjGGx1xpBvNYwCJqrOAYH3GGL1pde6Udam86qVpXwXmIP5Z29AMX3KtZ
    is the fluid 4-velocity and is the rest-mass density in a locally inertial reference
    frame.

    AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav
    AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav
    AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav
    AAAC0HichVE9TxtBEH1cAjEmYJM0SGmsGBJEYc3RBFEgS2lSgokBCRPr7rx2VtxX7sMCTgilRaKmSBUkiihl2qSiIT8gBT8hogSJhoK59YlAEMmebmfm7bzZtzOmb8swIjrp0x487B94lBvMDz0eHikUR58shV4cWKJuebYXrJhGKGzpinokI1us+IEwHNMWy+b66/R8uSuCUHru22jTF2uO0XFlW1pGxFCz+LJhio50E/EhVsjUdj5+13DifEO4rRtos1imCqlVuuvomVNGtua94k800IIHCzEcCLiI2LdhIORvFToIPmNrSBgL2JPqXGAbeebGnCU4w2B0nfcOR6sZ6nKc1gwV2+JbbP4DZpYwQb/oC53RMX2l33R5b61E1Ui1bLI1e1zhNwu7Y4sX/2U5bCO8/8P6p+YIbcworZK1+wpJX2H1+N2t/bPF2dpE8oIO6JT1f6YTOuIXuN1z63BB1D6p6i3mtNl22VoocwcTjlLtHjaUb6pOtK7VlTCu8sb5Hu4qD1H/e2R3naXpik4VfWG6XJ3LxpnDMzzHJFd6hSreYB51VrCHb/iOH1pN29B2tI+9VK0v4zzFraXtXgHx8aav

    AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk=
    AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk=
    AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk=
    AAACz3ichVExT9tQEP4wUGiAJoUFqUvUAEIdonOWog4oEgsjAQJIBEW28xKecGzXdgLBArFSdWfoBFKHqhsrbCztD+jAT0CMIHXpwPnFAlrU9ll+d/e9++597870bBmERJc9Wm9f/7OBweepoeGRF+nMy9GVwG35lihbru36a6YRCFs6ohzK0BZrni+MpmmLVXNrLj5fbQs/kK6zHHY8sdE0Go6sS8sIGapmpiqmaEgnEu9bCnmzl6r4m26qIpzaI7CayVGe1Mo+dfTEySFZC27mOyqowYWFFpoQcBCyb8NAwN86dBA8xjYQMeazJ9W5wB5SzG1xluAMg9Et3hscrSeow3FcM1Bsi2+x+feZmcUk/aAvdEPf6Ctd0a+/1opUjVhLh63Z5Qqvmv4wvvTzv6wm2xCbD6x/ag5Rx4zSKlm7p5D4FVaX3949ull6tzgZTdEJXbP+Y7qkC36B0761PpfE4idVvcacOts2Wws57mDEUazdxY7yTdWJ2r26LCZU3gTfw13lIep/juyps1LI65TXS4VccTYZ5yBe4TWmudJbFDGPBZRZwUec4gznWknb1va1g26q1pNwxvDb0g7vAMe/pjk=
    slide: Yosuke Mizuno

    View Slide

  99. rµ(⇢uµ) = 0
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    AAAC53ichVFNTxRBEH2MirAqrHoh8TJxwQCHTQ0XiImEhItHPlwgYXAzM9u7dJjpGedjI072D3jxhiaeMHow/gwv6lU98BMMR0i8eLCmd+IHBOjJdFW9rlf9usqNfJmkRAcDxqXLVwavDg1Xrl2/MTJavXlrLQmz2BMNL/TDeMN1EuFLJRqpTH2xEcXCCVxfrLs7i8X5elfEiQzVo3Q3EluB01GyLT0nZahZnbdd0ZEqF08yjUz3KrZyXN9p2kFmTtrxdmhmj3MOelMPTKrYQrX+SW5Wa1QnvczTjlU6NZRrKax+ho0WQnjIEEBAIWXfh4OEv01YIESMbSFnLGZP6nOBHirMzThLcIbD6A7vHY42S1RxXNRMNNvjW3z+Y2aamKDv9J6O6BN9oB/068xaua5RaNll6/a5ImqOPh9b/XkhK2CbYvsv61zNKdqY01ola480UrzC6/O7z14erd5fmcjv0Rs6ZP37dEAf+QWqe+y9WxYrr3X1FnPabLtsPdS4gzlHhfYQT7Xv6k60/qgzMa7zxvke7ioP0To5stPO2kzdorq1PFNbmC/HOYQ7uItJrjSLBTzEEhqs4C2+4Cu+GdJ4YewZr/qpxkDJuY3/lrH/G3Her0c=
    rµTµ⌫ = 0
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    AAAC5HichVFNTxRBEH2MgLgKrHox8TJxwRAPmxouEoyGxItHvhZIGNjMzPauHWZ6xvnYiJP9A8abMR5MTDDhQPgZHoSbHjzwEwxHSLx4sKZ3ogJRezJdVa/rVb+uciNfJinR0YBxaXBo+PLIlcrVa6Nj49XrN1aSMIs90fBCP4zXXCcRvlSikcrUF2tRLJzA9cWqu/W4OF/tijiRoVpOtyOxETgdJdvSc1KGmtUHtis6UuXiWaaRe72KrRzXd5p2kJnLm3lhbJX1HppUsYVq/ZHZrNaoTnqZFx2rdGoo13xYPYSNFkJ4yBBAQCFl34eDhL91WCBEjG0gZyxmT+pzgR4qzM04S3CGw+gW7x2O1ktUcVzUTDTb41t8/mNmmpikr7RHJ3RA+/SNfvy1Vq5rFFq22bp9roia4y9vLX3/Lytgm+Lpb9Y/NadoY0Zrlaw90kjxCq/P7754e7I0uziZ36UPdMz6d+iIPvILVPfU210Qi+909RZz2my7bD3UuIM5R4X2EM+17+pOtH6pMzGh8yb4Hu4qD9E6P7KLzsp03aK6tTBdm3tUjnMEt3EHU1zpPubwBPNosIIdfMJnfDHaxivjtfGmn2oMlJybOLOM9z8B2Q2uUQ==
    • GRHD equations + Maxwell equations

    ⇤Fµ⌫ = 0
    AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ==
    AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ==
    AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ==
    AAAC6XichVHLahRBFD1pX3F8ZDSbQDaNk4gEGW5nowQSBoTgMg8nCaSTobunZiymu7rtx5CkmR9w50rRlRGFkM9wo+A2Qj5BXEZw48LbNY2voFbTdU+duufWqbpu5MskJToeMc6cPXf+wujFyqXLV66OVa9dX0vCLPZE0wv9MN5wnUT4UolmKlNfbESxcALXF+tu716xv94XcSJD9SDdjcRW4HSV7EjPSZlqVRu2K7pS5eJRppmZQcVWjus7LTvI7Nvm9szids7QtFU2MOdNqthCtX9Jb1VrVCc9zNPAKkEN5VgKq+9ho40QHjIEEFBIGftwkPC3CQuEiLkt5MzFjKTeFxigwtqMswRnOMz2eO7yarNkFa+LmolWe3yKz3/MShPTdEQHdELv6JA+0be/1sp1jcLLLkd3qBVRa+zxxOrX/6oCjike/lT903OKDu5qr5K9R5opbuEN9f29pyercyvT+U3ap8/s/yUd01u+gep/8V4vi5UXunqbNR2OfY4eavyCOa8K7yF2NHb1S7R/uDMxpfOm+Bx+VW6i9WfLToO12bpFdWt5ttZYKNs5ikncwC2udAcN3McSmuzgDT7gCB+NnvHEeGY8H6YaI6VmHL8N49V3iK+vpQ==
    where Fµν, Faraday tensor may be constructed from electric and magnetic fields Eα, Bα as
    measured in a generic frame as
    Fµ⌫ = UµE⌫ U⌫Eµ ( g) 1/2⌘µ⌫ U B
    AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM=
    AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM=
    AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM=
    AAADU3ichVPLbtQwFL2Z4VEGSgNskNhYTIsK0gzOLFqEBIxAIJZ9MG2lph05jmeI6jghcUaUKD/AD7BgBRIL4DPYwAd00U9ALIvEAhbceKKhUAGOknt9zj3Xx7bixTJINaX7Vq1+7PiJk1OnGqfPTJ+dsc+dX0ujLOGixyMZJRseS4UMlOjpQEuxESeChZ4U697OvZJfH4kkDSL1SO/GYitkQxUMAs40Qn37neuJYaBy8SQzyLWi8WA7d8OMuCoryC2Su5xJ0isMWJD7GEuidZhQFREaYr5Fhle385ZzvVMQV2g26Udcic58RlxfSM2KSY9+XjEFuYv5mG24QvmHjPXtJm1TM8jRxKmSJlRjKbI/gQs+RMAhgxAEKNCYS2CQ4rMJDlCIEduCHLEEs8DwAgpooDbDKoEVDNEd/A5xtlmhCudlz9SoOa4i8U1QSWCO7tG39IB+pO/pZ/rjr71y06P0sovRG2tF3J95fnH1239VIUYNj3+p/ulZwwBuGK8Beo8NUu6Cj/WjZy8OVm+uzOVX6Gv6Bf2/ovv0A+5Ajb7yN8ti5aXp7qNmgHGEkUMTTzDHWek9gqcm98xJ+BN3BGZN3Syug6eKl+j8eWVHk7VO26FtZ7nT7N6urnMKLsFlmMdOi9CFh7AEPeCWbS1Yd6xuba/2vY5/ybi0ZlWaC/DbqE//BN4k0tM=
    where ηµνλδ: the fully-antisymmetric symbol and g : determinant of 4-
    metric
    • The dual Faraday tensor is
    ⇤Fµ⌫ = UµB⌫ U⌫Bµ ( g) 1/2⌘µ⌫ U E
    AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA==
    AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA==
    AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA==
    AAADVXichVHLbtNAFL1OSinhkVA2SGxGpEWlUsI4GyokUCkCseyDtJXqJhqPJ8HqeGzscUSx/AP8AAtWILFA8Bds4AMQ6icglkViAxLXEysUKmAsz71zzj13zsy4kfQTTemBValOnZg+OXOqdvrM2XP1xvnZzSRMYy66PJRhvO2yREhfia72tRTbUSxY4Eqx5e7dKfitkYgTP1QP9H4kdgM2VP7A50wj1G+8dVwx9FUmHqUGWcxrvcV7vcwJUuKoNCc3SeZwJkk3N2BOVjAWROsooUoiMMRCiwyv9rKWfa2TE0doNulHHInePEYcT0jN8kmPflYyObmL+ZitOUJ5R6z1G03apmaQ44ldJk0ox2rY+AAOeBAChxQCEKBAYy6BQYLfDthAIUJsFzLEYsx8wwvIoYbaFKsEVjBE93Ae4mqnRBWui56JUXPcReIfo5LAPP1IX9ND+p6+oZ/p97/2ykyPwss+RnesFVG//vTixrf/qgKMGh7+Uv3Ts4YBLBmvPnqPDFKcgo/1oyfPDjdurM9nV+hL+gX9v6AH9B2eQI2+8ldrYv256e6hZoBxhJFDE28ww1XhPYTHJnfNTXgTdwTmTN0c7oO3io9o//lkx5PNTtumbXut01y+VT7nDFyCy7CAna7DMtyHVegCt2atJeu2tVL5VPlRnapOj0srVqm5AL+Nav0ntoDTbA==
    • Ideal MHD limit Fµ⌫u⌫ = 0
    AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ==
    AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ==
    AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ==
    AAAC4XichVFNaxRBEH0ZNcZVk41eBC+Dm4jksNTkYggoAUE85muTQCYuM729a5OZnnE+FuOwP0BP4sVDQFDwIP4Mc9CD3jzkJ4jHCF48WNM7mGjQ9DBdVa/rVb+u8uNApRnR/oh16vSZ0bNj52rnL1wcn6hPXlpLozwRsiWiIEo2fC+VgdKylakskBtxIr3QD+S6v32nPF/vyyRVkV7NdmK5FXo9rbpKeBlD7fqc68ue0oV8mBtkZlC7e79ww9x2dT6w83ZR2ls21VypO0fS2vUGNcks+7jjVE4D1VqM6h/hooMIAjlCSGhk7AfwkPK3CQeEmLEtFIwl7ClzLjFAjbk5Z0nO8Bjd5r3H0WaFao7LmqlhC74l4D9hpo1p+kJv6YA+0Dv6Sj//WaswNUotO2z9IVfG7YmnV1Z+nMgK2WZ4cMj6r+YMXcwZrYq1xwYpXyGG/P7jFwcr88vTxXV6Td9Y/yvap/f8At3/Lt4syeVdU73DnC7bPluBBnew4KjUHuGR8X3Tic5vdTamTN4U38Nd5SE6f4/suLM223So6SzNNhZuV+Mcw1Vcww2udBMLuIdFtFjBS+zhEz5bwnpiPbOeD1OtkYpzGX8sa/cX8QmtOQ==
    Jµ = ⇢quµ + Fµ⌫u⌫
    AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc=
    AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc=
    AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc=
    AAAC+3ichVE7b9RAEP5iXuF45IAGiWbFJQiBdBqnASGQIiEhRJVcuCRSnFi2b++yir12/DgRrPsD/AEKKkAUPFokehr4ARRpaAFRBomGgvGexSsC1vLOzLfzzX474yehynKinQlr3/4DBw9NHm4cOXrs+FTzxMmlLC7SQHaDOIzTFd/LZKi07OYqD+VKkkov8kO57G9er86XhzLNVKxv59uJXIu8gVZ9FXg5Q26z4/hyoHQptwqDXBg1bq07USGuCSfdiN0tUZjwonAyNYg8cWO9rGJHFyNRuGxEw5G690sBt9miNpkl9jp27bRQr/m4+RYOeogRoEAECY2c/RAeMv5WYYOQMLaGkrGUPWXOJUZoMLfgLMkZHqObvA84Wq1RzXFVMzPsgG8J+U+ZKTBD7+gp7dIbek6f6Ntfa5WmRqVlm60/5srEnbp3evHrf1kR2xwbP1n/1Jyjj8tGq2LtiUGqVwRj/vDu/d3FK52Z8hw9os+s/yHt0Gt+gR5+CZ4syM4DU73HnD7bIdsALe5gyVGlPcYd4/umE70f6gSmTd4038Nd5SHaf45sr7M027apbS/Mtuau1uOcxBmcxXmudAlzuIl5dFnBK7zHB3y0RtZj65n1YpxqTdScU/htWS+/A71rttc=
    ! 1
    AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg==
    AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg==
    AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg==
    AAAC3HichVE7b9RAEP5iXuF43AENEo3FJQhRnMZJkQhRRKJJmQeXRIqTk+3bu6xir429d+Kw0lGB0oKiVERKEeVHUNAkP4AiPwFRBomGIuM9i1cErOWdmW/nm/12xk9CmWmikxHrwsVLl6+MXq1cu37jZrV26/ZSFvfSQDSDOIzTFd/LRCiVaGqpQ7GSpMKL/FAs+5tPi/PlvkgzGatnepCItcjrKtmRgacZatUmXV90pcrF855BHm1V3Ex2I892dWy7UnX0oOIK1f4lo1WrU4PMss87TunUUa65uHYMF23ECNBDBAEFzX4IDxl/q3BASBhbQ85Yyp405wJbqDC3x1mCMzxGN3nvcrRaoorjomZm2AHfEvKfMtPGOH2iAzqlIzqkz/T9r7VyU6PQMmDrD7kiaVVf31389l9WxFZj4yfrn5o1Opg2WiVrTwxSvCIY8vsv350uPl4Yzx/QHn1h/e/phD7yC1T/a7A/LxZ2TfU2czps+2wD1LmDOUeF9hgvjO+bTrR/qLMxZvLG+B7uKg/R+XNk552liYZDDWd+oj7zpBznKO7hPh5ypSnMYBZzaLKCHXzAEY6tdeuV9cbaHqZaIyXnDn5b1tszbxOrhg==
    U↵
    AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw==
    AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw==
    AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw==
    AAAC2nichVFLTxRBEP4YX7A+WOViwmXDgjEeNjVcNB4MiReOPFwgYWDT09u7dOidGWdmN+JkL97UqwkHTpBwIPwGTyY+fgAHfoLxiIkXD9T0TkAlak+mq/qr+qq/rvIjo5OU6HjIuXT5ytVrwyOl6zdu3hot376zlITdWKq6DE0Yr/giUUYHqp7q1KiVKFai4xu17G8+zePLPRUnOgyepVuRWuuIdqBbWoqUoUbZ9XzV1kGmnnct8qBfyjwpTKXeX/eEiTZEyVNB85d4o1ylGtlVuei4hVNFsebC8hd4aCKERBcdKARI2TcQSPhbhQtCxNgaMsZi9rSNK/RRYm6XsxRnCEY3eW/zabVAAz7nNRPLlnyL4T9mZgVTdEQHdEKf6ZC+0s+/1spsjVzLFlt/wFVRY/TN3cUf/2V12KbYOGf9U3OKFh5ZrZq1RxbJXyEH/N7L7ZPFxwtT2T3ao2+sf5eO6QO/IOh9l/vzamHHVm8yp8W2x1aiyh3M+JRrD/HC+r7tRPNMXQWTNm+S7+Gu8hDdP0d20VmarrlUc+enqzNPinEOYxwTuM+VHmIGs5hDnRVs4z0+4pPjOa+c187bQaozVHDG8Nty3p0CW8Gquw==
    General relativistic magnetohydrodynamics
    slide: Yosuke Mizuno

    View Slide

  100. Accretion flow states

    View Slide

  101. Thermal sta
    (NLS1s?)
    Intermediat
    (Quasars, Se
    M
    ·
    a
    Simple description of an accretion disk
    ·
    M/
    ·
    M
    Edd
    mass accretion rate
    h /r
    disk thickness
    ·
    M = 4πr2ρv
    r
    mass accr. rate related to gas density

    View Slide

  102. t
    cool
    ≪ t
    acc
    h/r ⇠ 1
    –8
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*)
    M
    ·
    0
    log (L/L
    Edd
    )
    a b
    ·
    M/
    ·
    M
    Edd
    1
    RIAFs
    h/r ⌧ 1
    Thin disks
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    M
    ·
    log (L/L
    Edd
    )
    a b
    –8
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*) 0
    Figure 7
    (a) Schematic diagram showing the configuration of the accretion flow in different
    accretion rate ˙
    MBH
    (panel adapted from Esin et al. 1997, Narayan & McClintock
    in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h
    transition radius Rtr where the thin disk is truncated becomes smaller with increas
    truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal
    from observations. The transition radii were estimated by modeling spectra of ind
    Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h
    LLAGN, low-luminosity active galactic nuclei.
    h/r ⇠ 1
    0.01
    then move on and describe consequence for efficiency
    q
    adv
    ≫ q

    q
    adv
    ≫ q

    Super-Eddington
    q

    ≫ q
    adv
    Unified theory of black hole accretion flows
    L/L
    Edd

    View Slide

  103. t
    cool
    ≫ t
    acc
    h/r ⌧ 1
    Thin disks
    ·
    M/
    ·
    M
    Edd
    1
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    M
    ·
    log (L/L
    Edd
    )
    a b
    –8
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*) 0
    Figure 7
    (a) Schematic diagram showing the configuration of the accretion flow in different
    accretion rate ˙
    MBH
    (panel adapted from Esin et al. 1997, Narayan & McClintock
    in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h
    transition radius Rtr where the thin disk is truncated becomes smaller with increas
    truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal
    from observations. The transition radii were estimated by modeling spectra of ind
    Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h
    LLAGN, low-luminosity active galactic nuclei.
    h/r ⇠ 1
    0.01
    then move on and describe consequence for efficiency
    q
    adv
    ≫ q

    q
    adv
    ≫ q

    Super-Eddington
    Unified theory of black hole accretion flows
    h/r ⇠ 1
    –8
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*)
    M
    ·
    0
    log (L/L
    Edd
    )
    a b
    RIAFs
    radiatively inefficient accretion flow
    L/L
    Edd

    View Slide

  104. h/r ⇠ 1
    h/r ⌧ 1
    Thin disks
    –8
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*)
    M
    ·
    0
    log (L/L
    Edd
    )
    a b
    ·
    M/
    ·
    M
    Edd
    1
    RIAFs
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    M
    ·
    log (L/L
    Edd
    )
    a b
    –8
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*) 0
    Figure 7
    (a) Schematic diagram showing the configuration of the accretion flow in different
    accretion rate ˙
    MBH
    (panel adapted from Esin et al. 1997, Narayan & McClintock
    in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h
    transition radius Rtr where the thin disk is truncated becomes smaller with increas
    truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal
    from observations. The transition radii were estimated by modeling spectra of ind
    Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h
    LLAGN, low-luminosity active galactic nuclei.
    h/r ⇠ 1
    0.01
    q
    adv
    ≫ q

    q
    adv
    ≫ q

    Super-Eddington
    Unified theory of black hole accretion flows

    View Slide

  105. h/r ⇠ 1
    h/r ⌧ 1
    Thin disks
    –8
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*)
    M
    ·
    0
    log (L/L
    Edd
    )
    a b
    ·
    M/
    ·
    M
    Edd
    1
    RIAFs
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    M
    ·
    log (L/L
    Edd
    )
    a b
    0.01
    q
    adv
    ≫ q

    –8
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*) 0
    Figure 7
    (a) Schematic diagram showing the configuration of the accretion flow in different
    accretion rate ˙
    MBH
    (panel adapted from Esin et al. 1997, Narayan & McClintock
    in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h
    transition radius Rtr where the thin disk is truncated becomes smaller with increas
    truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal
    from observations. The transition radii were estimated by modeling spectra of ind
    Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h
    LLAGN, low-luminosity active galactic nuclei.
    h/r ⇠ 1
    Super-Eddington
    Unified theory of black hole accretion flows
    Adapted from Yuan & Narayan 2014, ARA&A
    t
    diffusion
    ≫ t
    acc
    photon

    View Slide

  106. h/r ⇠ 1
    h/r ⌧ 1
    Adapted from Yuan & Narayan 2014, ARA&A
    Thin disks
    Unified theory of black hole accretion flows
    –8
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*)
    M
    ·
    0
    log (L/L
    Edd
    )
    a b
    ·
    M/
    ·
    M
    Edd
    1
    RIAFs
    –6
    –4
    –2
    0
    Brig
    C
    Thermal state
    (NLS1s?)
    Intermediate state?
    (Quasars, Seyferts?)
    Hard state
    (LLAGNs, Seyferts)
    M
    ·
    log (L/L
    Edd
    )
    a b
    –8
    (LLAGNs, Seyferts)
    Quiescent state
    (LLAGNs, Sgr A*) 0
    Figure 7
    (a) Schematic diagram showing the configuration of the accretion flow in different
    accretion rate ˙
    MBH
    (panel adapted from Esin et al. 1997, Narayan & McClintock
    in parentheses. Red triangles indicate the hot accretion flow, whereas thick black h
    transition radius Rtr where the thin disk is truncated becomes smaller with increas
    truncated, and its inner edge is located at the ISCO. (b) Plot of the Eddington-scal
    from observations. The transition radii were estimated by modeling spectra of ind
    Yuan & Narayan 2004). Abbreviations: AGN, active galactic nuclei; BHB, black h
    LLAGN, low-luminosity active galactic nuclei.
    h/r ⇠ 1
    0.01
    Super-Eddington
    radiative efficiency
    η ≪ 0.1
    η = 0.06 − 0.4
    η ≪ 0.1
    L/L
    Edd

    View Slide

  107. thin or thick. In thin disks, most of the mass
    supplied at large radii reaches the central black
    hole. By contrast, in thick disks, very little of the
    supplied mass ends up accreting into the hole.
    Instead, most of the mass circulates in convective
    motions (33, 34) or is driven away in an unbound
    outflow (35, 36). This in turn causes the
    amount of radiation from the accretion flow to
    decrease drastically. Because the fate of sup-
    plied matter depends so strongly on the mode
    of accretion (thin versus thick), it is likely
    that bright accreting black holes occupy a
    Jet
    Coronal envelope
    Inner torus
    Main disk body
    KDP
    30
    20
    10
    10
    20
    0
    –10
    1
    SNE, GRB
    Radiation–trapped
    Bright XRBs, AGN
    Faint XRBs, AGN
    2
    2 3
    log R (RS
    )
    log R (km)
    log M (MEdd
    )
    log M (g s–1)
    Regimes of
    BH accretion
    Super-Eddington,
    radiation-trapped
    TDE, AGN?
    Near-Eddington
    Sub-Eddington
    om the accretion flow to
    Because the fate of sup-
    so strongly on the mode
    rsus thick), it is likely
    black holes occupy a
    Main disk body
    KDP
    30
    20
    10
    0
    SNE, GRB
    Radiation–trapped
    Bright XRBs, AGN
    Faint XRBs, AGN
    log M (MEdd
    )
    log M (g s–1)
    Main disk body
    KDP
    20
    10
    0
    –10
    1
    Radiation–trapped
    Bright XRBs, AGN
    Faint XRBs, AGN
    2
    log R (RS
    )
    log M (MEdd
    )
    log M (g s–1)
    the central black
    s, very little of the
    ng into the hole.
    ates in convective
    way in an unbound
    turn causes the
    accretion flow to
    the fate of sup-
    ngly on the mode
    ick), it is likely
    holes occupy a
    KDP
    30
    10
    20
    SNE, GRB
    Radiation–trapped
    2 3
    log R (km)
    log M (MEdd
    )
    log M (g s–1)
    Adapted from Narayan &
    Quataert 2005
    Faint XRBs, low-
    luminosity AGNs
    Bright XRB, quasars, Seyferts
    log R (pc)
    -4 -5
    ?
    ?
    slide from BASS ESO 2018
    talk

    View Slide

  108. Jets
    slides in this section come from jets
    lecture in “BH gastrophysics” course

    View Slide

  109. Hercules A
    Black holes produce relativistic jets of
    particles
    Size of the
    galaxy

    View Slide

  110. Hercules A
    3C 31
    ~1 Mpc ~100 kpc
    M87
    Cosmic
    particle
    accelerators!
    Black holes produce relativistic jets of
    particles
    Huge powers (enough to
    unbind a galaxy)
    Aligned over long periods
    (millions of years)

    View Slide

  111. How are relativistic jets
    produced by black holes?
    Conjecture: from spinning black holes
    Huge free energy
    Stable gyroscopes
    Growing evidence that this is correct
    Theory/simulations
    Observations (?)

    View Slide

  112. https://www.youtube.com/watch?v=9MHuhcFQsBg
    Penrose process: Spinning black hole has free
    energy that can be extracted
    Rotational energy of spacetime
    (frame dragging)
    Thought experiment by Penrose that
    demonstrates the principle, probably
    not important in astrophysics
    But magnetized accretion disks is
    promising
    Penrose 1969
    Ruffini & Wilson 1975; Blandford & Znajek 1977

    View Slide

  113. Need a natural mechanism to
    accelerate particles from compact
    objects

    View Slide

  114. How jets are formed
    large scale B + accretion
    + rotation
    Semenov+2004, Science
    magnetic
    flux tube
    ergosphere
    Requirements
    v

    spinning
    black hole

    View Slide

  115. How jets are formed
    large scale B + accretion
    + rotation
    Semenov+2004, Science
    Requirements
    P =
    B2
    8⇡
    AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E=
    AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E=
    AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E=
    AAACDHicdVDLSsNAFJ34rPUVdSO4GSyCCwkTNdgsBNGNywrWFppaJtOJHTpJhplJoYT6CX6FW125E7f+gwv/xUmtoKIHLhzOuZd77wkFZ0oj9GZNTc/Mzs2XFsqLS8srq/ba+pVKM0lonaQ8lc0QK8pZQuuaaU6bQlIch5w2wv5Z4TcGVCqWJpd6KGg7xjcJixjB2kgde7N2HEQSk/y0E4geu94f5VUYCDbq2BXkIM/3XASR4yHXPyiI71cPPQ+6DhqjAiaodez3oJuSLKaJJhwr1XKR0O0cS80Ip6NykCkqMOnjG9oyNMExVXvdARNqTNv5+JkR3DFmF0apNJVoOFa/D+c4VmoYh6YzxrqnfnuF+JfXynRUbecsEZmmCflcFGUc6hQWycAuk5RoPjQEE8nM2ZD0sMlGm/zKJo+vp+H/5GrfcZHjXhxWTk4nyZTAFtgGu8AFR+AEnIMaqAMCbsE9eACP1p31ZD1bL5+tU9ZkZgP8gPX6AVytm2E=

    View Slide

  116. How jets are formed
    large scale B + accretion
    + rotation
    Semenov+2004, Science
    Requirements
    environment
    radiation
    GR
    Lense-Thirring precession
    Complications for theory
    Blandford-Znajek
    mechanism:
    Jet power
    rotation frequency
    magnetic flux
    ∝(ΦΩ)2 ∼
    (
    a
    M
    Φ
    BH)
    2
    ∼ a2
    ·
    Mc2
    Jet

    View Slide

  117. Kudos to Alice Harding (NASA GSFC) https://www.youtube.com/watch?v=R173dLIktsw
    How to make a black hole jet at home:
    Homopolar generator

    View Slide

  118. Best way of producing relativistic jets
    Compact object accreting highly magnetized gas
    magnetized
    accretion flow
    Such conditions are natural outcomes of stellar deaths and easily
    produced around black holes

    View Slide

  119. Basic facts about jets
    Highly magnetized
    β =
    P
    gas
    Pmag
    < 0.1
    N
    m
    s
    T
    th
    r
    in
    la
    a
    in
    u
    ti
    s
    o
    U
    strong
    synchrotron
    radiation
    ν
    c
    ∼ γ2B MHz
    expect to see in radio

    View Slide

  120. Basic facts about jets
    Highly magnetized
    β =
    P
    gas
    Pmag
    < 0.1
    Relativistic
    Γ ∼ a few − 100 v > 0.9c
    AGNs GRBs
    bulk
    Lorentz
    factor

    View Slide

  121. synchrotron emitting
    electron
    in the comoving frame
    of the plasma

    View Slide

  122. shall Cohe
    discovered
    These are p
    that is, wh
    any misalig
    jets associa
    the emissio
    with the fa
    degrees or
    One does n
    less they ex
    radio sour
    v= 0.94c
    comoving
    frame
    ments of s
    shall Cohe
    discovered
    These are
    that is, wh
    any misali
    jets associa
    the emissio
    with the fa
    degrees or
    One does
    less they ex
    v= 0.5c
    ments of sm
    shall Cohe
    discovered
    These are p
    that is, wh
    any misalig
    jets associa
    the emissio
    with the fa
    degrees or
    One does n
    less they ex
    v= 0.75c
    shall Cohe
    discovered
    These are
    that is, wh
    any misali
    jets associa
    the emissio
    with the fa
    degrees or
    One does
    less they ex
    radio sour
    v= 0.98c
    observer’s frame

    View Slide

  123. Basic facts about jets
    Highly magnetized
    β =
    P
    gas
    Pmag
    < 0.1
    Relativistic
    Γ ∼ a few − 100 v > 0.9c
    Beamed: most radiated power along the propagation
    direction, skewed towards high frequency
    relativistic
    aberration
    Doppler shift

    View Slide

  124. neutrinos, cosmic rays
    maybe show Feynman diagrams
    Basic facts about jets
    Collimated
    Highly magnetized
    β =
    P
    gas
    Pmag
    < 0.1
    Relativistic
    Γ ∼ a few − 100 v > 0.9c
    Beamed: most radiated power along the propagation
    direction
    θ
    j
    < 10∘
    collimation
    half-angle
    θ
    j

    View Slide

  125. Blazars
    slides from my talk “jets and unified
    model”

    View Slide

  126. Launching of Active Galactic Nuclei Jets
    19
    toward the polar regions as they move away from the BH. The group of field lines
    highlighted in green connects to the BH and makes up the twin polar jets. The jet
    field lines extract BH rotational energy and carry it away to large distances. These
    field lines have little to no gas attached to them and are therefore highly magnetized
    (since disk gas cannot cross magnetic field lines and is thus blocked from getting
    to the polar region, the jet field lines either drain the gas to the BH or fling the gas
    Fig. 9 [Panel (a)]: A 3D rendering of our MAD a = 0.99 model at t = 27,015rg
    /c (i.e., the same
    time as Fig. 8d). Dynamically-important magnetic fields are twisted by the rotation of a BH (too
    small to be seen in the image) at the center of an accretion disk. The azimuthal magnetic field
    component clearly dominates the jet structure. Density is shown with color: disk body is shown
    ith yellow and jets with cyan-blue color; we show jet magnetic field lines with cyan bands. The
    s approximately 300rg
    ⇥800rg
    . [Panel (b)]: Vertical slice through our MAD a = 0.99
    e and azimuth over the period, 25,000rg
    /c  t  35,000rg
    /c. Ordered,
    fields remove the angular momentum from the accreting gas
    pinning BH (a = 0.99). Gray filled circle shows the
    s, and gray dashed lines indicate density
    of the time-average magnetic
    s is also seen from
    nd with
    Jet sim.: Tchekhovskoy
    The difference between blazars and
    radio galaxies is orientation
    Blazar
    Radio galaxy
    Radio galaxy Rad

    View Slide

  127. Beyond orientation: Radio loud AGNs
    have different states of accretion flow
    FR I
    FR II
    Radio galaxy
    morphology
    BL Lac
    FSRQ
    flux
    flux
    ADAF
    thin disk
    Blazar spectral type
    Wavelength (A)
    Wavelength (A)
    Low power,
    weak lines
    High power,
    broad lines,
    UV bump
    Accretion mode
    torus disappears?

    View Slide

  128. Synchrotron
    emission
    Inverse Compton
    Isotropic Radio
    Emission from
    Slowed Plasma in
    the Lobes
    E. Meyer+2011
    log(⌫/Hz)
    log(⌫L⌫/erg s 1)
    dp" = Pdx"
    As a consequence, P is a scalar invariant. We therefor
    relativistic generalisation of equation (2.3)for which
    choice is
    2e2 dp" dp,.
    P=--<-->
    dr dr
    where r denotes the proper time. Rewriting this eq
    (3 = v/ c, we obtain
    For synchrotron radiation, the particle energy is
    Equation(2.6)can be re-written in the convenient for
    2 2 (B2)
    P = 2aTCf (31. 871"
    Synchrotron power:
    Opt. thin
    synchrotron
    Synchrotron
    self-absorption
    Blazars: observing beamed
    power of the relativistic jet

    View Slide

  129. Blazar zoo: the “blazar sequence”
    Fossati+1998; Donato+2001
    Ghisellini 11
    Swift / BAT Fermi / LAT
    Integral
    FSRQs
    BL Lacs

    View Slide

  130. Ghisellini 11
    Swift / BAT Fermi / LAT
    Integral
    FSRQs
    BL Lacs
    Line strength
    ˙
    M/ ˙
    MEdd
    Blazar zoo: the “blazar sequence”
    Fossati+1998; Donato+2001

    View Slide

  131. Ghisellini 11
    Swift / BAT Fermi / LAT
    Integral
    FSRQs
    BL Lacs
    FR II
    FR I
    Continuous?
    Discontinuity
    Blazar zoo: the “blazar sequence”
    Fossati+1998; Donato+2001

    View Slide

  132. Next Monday: Fabio Cafardo’s
    lecture on Fermi LAT observations

    View Slide

  133. GRMHD simulation of a jetted AGN
    https://youtu.be/TdZdqfD0LTI

    View Slide

  134. Observing the supermassive black hole
    M87* in virtual reality
    https://www.youtube.com/watch?v=bWg6vaf5WXw

    View Slide

  135. EM radiation:
    radio, infrared, optical, X-rays, gamma-rays
    neutrinos,
    cosmic rays
    AGNs: Powerful EM radiators,
    particle accelerators

    View Slide

  136. EM radiation:
    radio, infrared, optical, X-rays, gamma-rays
    neutrinos,
    cosmic rays
    Giant Magellan Telescope ELT LSST
    Cherenkov Telescope Array SKA
    IceCube Observatory
    AGNs: Powerful EM radiators,
    particle accelerators
    LISA
    GWs
    Athena

    View Slide

  137. The future of AGN
    astrophysics is
    bright!
    You can be part of this!
    blackholegroup.org

    View Slide

  138. Github
    Twitter
    Web
    E-mail
    Bitbucket
    Facebook
    Group
    figshare
    [email protected]
    rodrigonemmen.com
    @nemmen
    rsnemmen
    facebook.com/rodrigonemmen
    nemmen
    blackholegroup.org
    bit.ly/2fax2cT

    View Slide