Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CompML : Elementary knowledge for 'Parameter-Fr...
Search
sarrrrry
January 15, 2021
Technology
1
120
CompML : Elementary knowledge for 'Parameter-Free Online Optimization'
sarrrrry
January 15, 2021
Tweet
Share
More Decks by sarrrrry
See All by sarrrrry
点過程の基礎とその周辺
sarrrrry
0
170
みずほ銀行の2021年大規模システム障害に関する考察
sarrrrry
1
140
CompML:PaperReading-PHM-No.1
sarrrrry
0
160
PaperReading-ExplainingKnowledgeDistillationByQuantifyingTheKnowledge
sarrrrry
0
35
Other Decks in Technology
See All in Technology
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
110
コンテナセキュリティのためのLandlock入門
nullpo_head
2
320
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
450
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
どちらを使う?GitHub or Azure DevOps Ver. 24H2
kkamegawa
0
750
生成AIのガバナンスの全体像と現実解
fnifni
1
190
LINE Developersプロダクト(LIFF/LINE Login)におけるフロントエンド開発
lycorptech_jp
PRO
0
120
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
530
1等無人航空機操縦士一発試験 合格までの道のり ドローンミートアップ@大阪 2024/12/18
excdinc
0
160
マイクロサービスにおける容易なトランザクション管理に向けて
scalar
0
120
ずっと昔に Star をつけたはずの思い出せない GitHub リポジトリを見つけたい!
rokuosan
0
150
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Optimising Largest Contentful Paint
csswizardry
33
3k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Git: the NoSQL Database
bkeepers
PRO
427
64k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Making Projects Easy
brettharned
116
5.9k
Transcript
None
None
【目的】 典型的な確率的最適化手法 など で必要とされる、 やその他のパラメータの調整を不必要にする事。 【 】 • • •
• •
エキスパート統合問題 問題設定 • 東京ドームで行われたあるクイズ大会に参加 • 制限時間内に答えだと思った方向に移動する ◯ 外野側、✕ 内野側 •
◯✕クイズが 問出題され、成績上位者が2次予選に進める 問題が分からなくても優勝経験のある 人を発見して、同じ動きをすれば良い ◦ 正解率が高いはずの優勝経験のある人をエキスパートと呼ぶ事にする ◦ 人のエキスパートと問題出題者をまとめて環境と呼ぶ事にする 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 環境がプレイヤーのアルゴリズム を知った上で、予測 ・ となるクイズを出題する ような、最悪の場合の解析を行う手法 この手法から を求める事が多い? 畑埜晃平,
& 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 • 素朴な戦略 の真似をする
◦ ミスの回数 たかだか 回 • 分法 の多数決に従う ◦ ミスの回数 たかだか • 乱択 分法 から 様ランダムに 人選び、その決定に従う ◦ ミスの回数 たかだか 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 乱択2分法 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在する場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 敵対的論法 仮定 全問正解のエキスパート このページのみ と置く が存在しない場合 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社. アルゴリズム の 誤り回数の期待値 エキスパートの 誤り回数の最小値
エキスパート統合問題 乱択2分法 再掲 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 畑埜晃平, & 瀧本英二. (2016). オンライン予測. 講談社.
エキスパート統合問題 別の問題設定 オンライン配分問題 複数の投資先の銘柄 あるいはアルゴリズムやサーバ等選択肢 が与えられたとき、 持っている資源をうまく配分する事で損失を最小化する問題を考える 畑埜晃平, & 瀧本英二.
(2016). オンライン予測. 講談社.
エキスパート統合問題 エキスパートの予測集合の扱い • エキスパート統合問題 ◦ 乱択2分法の変更 重み付き平均アルゴリズム ▪ 単純な問題として定式化 •
どんなエキスパート統合問題 も確率ベクトル集合を予測集合とし、各エキスパート は常 に単位ベクトルを予測するものに限定した問題に還元できる 標準化 • 標準化したオンライン配分問題に対する を ヘッジアルゴリズム と呼ぶ • エキスパートの予測を単位ベクトルではなく、一般化して凸集合であるとした枠組み をオンライン凸最適化 と呼ぶ
エキスパート統合問題 エキスパート統合問題 標準形 ↪ 一般化 オンライン凸最適化問題 予測値集合 凸集合 ↪ 特殊ケース
オンライン線形最適化問題
論文 • ◦ ◦ 基準 をベースにした 推定量を用いて、 なオンライン最適化 手法の提案 他の論文解説はこちら
https://github.com/CompML/survey-stochastic-optimization/issues