Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIエージェントでのコーディングでわかった理解の重要性
Search
Satoshi Watanabe
July 30, 2025
Technology
0
21
AIエージェントでのコーディングでわかった理解の重要性
CHUO_Tech #8 Vibe Codingについて語ろう!での登壇資料です。
https://chuo-tech.connpass.com/event/358753/
Satoshi Watanabe
July 30, 2025
Tweet
Share
More Decks by Satoshi Watanabe
See All by Satoshi Watanabe
StartupAngular2資料
sassy
0
66
最近作ったClovaスキルの紹介
sassy
0
330
作ったスキルの紹介
sassy
1
440
RxJSではじめるリアクティブプログラミング
sassy
0
83
Other Decks in Technology
See All in Technology
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
270
ホリスティックテスティングの右側も大切にする 〜2つの[はか]る〜 / Holistic Testing: Right Side Matters
nihonbuson
PRO
0
580
マルチモーダル基盤モデルに基づく動画と音の解析技術
lycorptech_jp
PRO
4
500
VLMサービスを用いた請求書データ化検証 / SaaSxML_Session_1
sansan_randd
0
220
2025-07-31: GitHub Copilot Agent mode at Vibe Coding Cafe (15min)
chomado
2
370
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
1.5k
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
330
【Λ(らむだ)】最近のアプデ情報 / RPALT20250729
lambda
0
230
みんなのSRE 〜チーム全員でのSRE活動にするための4つの取り組み〜
kakehashi
PRO
2
140
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
110
解消したはずが…技術と人間のエラーが交錯する恐怖体験
lamaglama39
0
190
Claude Codeは仕様駆動の夢を見ない
gotalab555
4
710
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.8k
Side Projects
sachag
455
43k
Optimizing for Happiness
mojombo
379
70k
Agile that works and the tools we love
rasmusluckow
329
21k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
KATA
mclloyd
31
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
The Cost Of JavaScript in 2023
addyosmani
51
8.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
750
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Transcript
AIエージェントでのコーディングで わかった理解の重要性 ドクターメイト株式会社 ソフトウェアエンジニア 渡辺悟史
自己紹介 名前: 渡辺悟史 ドクターメイト株式会社 ソフトウェアエンジニア 担当サービス: 日中医療相談 オンライン診療サポート オンライン精神科医療養指導 趣味:
ライブ鑑賞 カメラ/写真撮影 最近は2歳児の育児に奮闘中
現在の開発環境と率直な感想 使用しているAIエージェント GitHub Copilot Devin (Claude Code も検証を始めたところ) 正直な実感:生産性は上がっていない? 期待していたほどの効率化を実感できていない
むしろ手間が増えているケースも多い なぜ生産性が上がらないのか?
生産性が上がらない理由 指示の難しさ うまくAIエージェントに指示を出せない 細かい指示は手動コーディングより面倒 意図を正確に伝えるコストが想像以上に高い アウトプットの品質問題 AIエージェントのアウトプットは一見するとそれらしいが微妙なケースが多い 最後の詰めが大変で結局手直しが必要 期待値とのギャップが大きい
手動コーディング禁止をやってみた AIエージェントのみでの開発を1sprintやってみた 部分的な手直しができないジレンマ 効率は最後の部分で時間がかかり、低下している 結果的に生産性が低下
何が大事か?効果的な活用方法 カスタム命令でコンテキストを与える copilot-instructions.md でルールを詳細に記述 テストの書き方、コーディング規約を明文化 プロジェクト固有の情報を共有 採用したアーキテクチャや設計情報 技術スタックや制約条件 どのようにテストを書くかのサンプル 既存のパターンやベストプラクティスもあると良いのかも
コードベース理解の重要性(1) なぜコードベース理解が必要なのか? コードベースの理解がないとうまく指示が出せない アウトプットの評価ができないと品質の悪いコードをコミットしてしまう可能性 理解できないため、結局AIの成果物を捨ててしまうこともある
コードベース理解の重要性(2) コードを理解するための実践方法 PRをレビューする 実際のコードをきちんと理解していく 時間をかけて理解 PRのレビューをAIに解説してもらう AIにレビューしてもらうより、自分の理解のために活用 AIエージェントに指摘してもらうのではなく、自分が指摘するための理解に使う 自分で書くことも大事 自分で書く、レビューすることで理解が深まる
理解することでAIを使いこなせるようになる
理想的なバランス:全てを任せない 現在の配分 4割AI、6割人間 の割合(感覚的には)で開発 完全にAIに依存するのではなく、人間の判断を重視 使いこなせるようになればAIの割合を増やせるかも 人間が担うべき領域 設計思想とアーキテクチャの決定 コードレビューと品質管理 最終的な判断と責任
モデルの進化に期待 ここ半年で確実にアウトプットの質は上がっている 技術の進歩は着実に感じられる 今後の発展に大きく期待
まとめ:現実的な期待と今後の展望 現時点での学び AIエージェントは万能ではない 適切な指示とコンテキスト提供が重要 コードベース理解が成功の鍵 これからの開発スタイル AIと人間の協働関係を模索 継続的な学習とスキル向上 技術進歩に合わせた柔軟な対応
We're hiring! 引き続き、ドクターメイトははソフトウェアエンジニアを募集しています! 興味のある方はぜひご応募ください!