Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メタデータ管理と生成AI ~ COMETAのこれまでとこれから ~
Search
satoshihirose
May 19, 2025
Technology
0
130
メタデータ管理と生成AI ~ COMETAのこれまでとこれから ~
satoshihirose
May 19, 2025
Tweet
Share
More Decks by satoshihirose
See All by satoshihirose
生成AIで実現するText-to-SQL入門
satoshihirose
5
860
顧客に価値を届け続けられる プロダクトであるために ~B2B SaaSにおいてプロダクトビジョン・戦略を改めて 策定するまでの道のり~
satoshihirose
2
910
Data Product Manager? / データプロダクトマネージャーとは?
satoshihirose
3
29k
Overview of The Modern Data Stack / モダンデータスタック概論
satoshihirose
12
8.6k
Cloud-Nativeなデータ分析基盤におけるPrestoの活用 / Cloud-Native Data Infrastructure with Presto
satoshihirose
1
9.2k
Data Engineering at SmartNews
satoshihirose
4
3.2k
Other Decks in Technology
See All in Technology
Windows で省エネ
murachiakira
0
150
避けられないI/O待ちに対処する: Rails アプリにおけるSSEとasync gemの活用 / Tackling Inevitable I/O Latency in Rails Apps with SSE and the async gem
moznion
2
1.8k
Goを使ってTDDを体験しよう!
chiroruxx
1
230
5年間のFintech × Rails実践に学ぶ - 基本に忠実な運用で築く高信頼性システム / 5 Years Fintech Rails Retrospective
ohbarye
9
3.4k
DEFCON CHV CTF 2025 Write-up
bata_24
0
190
AWSのProductのLifecycleについて
stknohg
PRO
0
300
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
800
KAGのLT会 #8 - 東京リージョンでGAしたAmazon Q in QuickSightを使って、報告用の資料を作ってみた
0air
0
180
コンテキストエンジニアリングとは? 考え方と応用方法
findy_eventslides
4
820
Findy Team+のSOC2取得までの道のり
rvirus0817
0
240
AI Agentと MCP Serverで実現する iOSアプリの 自動テスト作成の効率化
spiderplus_cb
0
290
あなたのWebサービスはAIに自動テストしてもらえる?アクセシビリティツリーで読み解く、AIの『視点』
yusukeiwaki
1
3.4k
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
600
Why Our Code Smells
bkeepers
PRO
339
57k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Writing Fast Ruby
sferik
629
62k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Balancing Empowerment & Direction
lara
4
660
The Pragmatic Product Professional
lauravandoore
36
6.9k
A designer walks into a library…
pauljervisheath
208
24k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Statistics for Hackers
jakevdp
799
220k
Transcript
©primeNumber Inc. メタデータ管理と生成AI ~ COMETAのこれまでとこれから ~ 2025-05-16 #p_UG 東京: 祝!COMETAリリース1周年
改めて振り返ろうデータカタログの重要性 株式会社primeNumber, 廣瀬智史
2 廣瀬智史 株式会社primeNumber COMETAのProduct Manager • Software Engineer -> Technical
Support Engineer -> Data Engineer -> Product Manager(いまここ) • データをビジネスの力に変えるための 製品づくりを頑張っています • X: @satoshihirose
3 これまでの振り返り
4 🎉 COMETA 1周年 🎉
5 これまでの振り返り / 開発・改善した機能 2024/05 2025/05 利用状況ダッシュ ボード機能 パフォーマンス改善 (10万テーブルでも
快適に動作) メタデータ エクスポート機能 用語集機能 dbt連携機能 Tableau連携機能 アセット取り込み ジョブの詳細表示 機能 カスタムデータベー ス連携機能 ビューリネージ機能 生成AIによるメタ データ自動生成機能 End to Endリネージ 機能 対話型AIアシスト 機能
6 これまでの振り返り より様々な連携、 より様々なメタデータに対し、 より効率的なメタデータ管理を サポートするよう進化してきた
7 今後は? 今後は?
8 従来のデータカタログ 人間のためにメタデータを管理する 仕組を整えるためのものだった
9 今後のデータカタログ 人間+AIのためにメタデータを管理 する仕組を整えるためのものになる
10 ChatGPTはすでにWikipediaより参照されている
11 ToBの未来はToCを見る 今は、企業内ユースはそこまで普及 してないが、今後一般ユーザーが情 報にアクセスするインターフェイス となる未来がくる
12 Future of Data Management Using GenAI
13 人間+AIがデータを理解し使えるよう に、データの定義、意味、スキーマ、 データ間の関連性など、メタデータを 一元的・効率的に管理できる仕組みを 構築すること やるべきこと
14 サイロ化ではない役割に応じたマルチ データストア利用はなくならない。 その場合、複数のデータストアやBIや ETLツールまでも一元的に管理できる レイヤーを用意すると効率が良い ≒Data Catalog as Semantic
Layer? COMETA必要?DWHの仕組みに集約するではダメ?
15 COMETAの実現することは • 圧倒的に効率的なメタデータ管理 • AIへのメタデータのスムーズな繋ぎ 込み というところで、
16 • AI-Readyなデータ • AI-Readyなデータ基盤 • AI-Readyな組織 • AI-Readyな社会 •
… 「AI-Readyの実現」が最近のpNのキーワードの一つ
17 COMETAのミッション AIを通じて人とデータをつなぎ、 だれもがデータを活用する未来をつくる
Thank you!