Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elasticsearchにおけるベクトル検索(第57回Elasticsearch勉強会)
Search
樋口慎
December 18, 2023
Technology
1
630
Elasticsearchにおけるベクトル検索(第57回Elasticsearch勉強会)
第57回 Elasticsearch勉強会(LT大会)の発表資料です。
樋口慎
December 18, 2023
Tweet
Share
More Decks by 樋口慎
See All by 樋口慎
ChatGPTをどう使うか?(JJUGナイトセミナー5/23)
shin_higuchi
1
2.3k
elasticsearch_semantic_search.pdf
shin_higuchi
0
320
ElasticsearchでECサイトにおける高速検索/集計を実現する
shin_higuchi
4
1.6k
Elasticsearchによる質問応答~NLP機械学習モデルの利用~
shin_higuchi
1
9.2k
Other Decks in Technology
See All in Technology
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
4k
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
140
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
230
Introduce marp-ai-slide-generator
itarutomy
0
140
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
280
AI との良い付き合い方を僕らは誰も知らない
asei
0
280
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
1.1k
技術選定、下から見るか?横から見るか?
masakiokuda
0
120
Identity Management for Agentic AI 解説
fujie
0
500
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
1.8k
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
280
Next.js 16の新機能 Cache Components について
sutetotanuki
0
190
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
YesSQL, Process and Tooling at Scale
rocio
174
15k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Building Applications with DynamoDB
mza
96
6.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.7k
Claude Code のすすめ
schroneko
67
210k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
Copyright © Acroquest Technology Co., Ltd. All rights reserved. 第57回Elasticsearch勉強会
Elasticsearchにおけるベクトル検索 Acroquest Technology 株式会社 Elastic Certified Engineer 樋口 慎 @shin0higuchi 1
自己紹介 ⚫ 名前:樋口 慎 ⚫ 所属:Acroquest Technology株式会社 ⚫ 業務:Elasticコンサルティング全般、データ分析、システム開発 ⚫
資格/執筆: 世界初「Elastic Certification」3種取得 Azure Solutions Architect Elasticsearch NEXT STEP 執筆
ベクトル検索のメリット Copyright © Acroquest Technology Co., Ltd. All rights reserved.
3
名称を知らないものを自然言語で検索するのは困難... Copyright © Acroquest Technology Co., Ltd. All rights reserved.
4 バッグクロージャー 袖ビーム グレービーボート ランチャーム
ベクトル化することで、自然言語に依らず検索が可能 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
5 画像1: [0.8, 0.2, 0.3, ....] 画像2: [0.0, 0.5, 0.2, ....] 画像3: [0.3, 0.4, 0.1, ....] 画像4: [0.4, 0.6, 0.2, ....] ベクトル化
文書のベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
6 ▪Elasticsearchの通常の検索 検索クエリを 形態素解析 AWS上でElasticsearchを使うには? AWS/上/で/Elasticsearch/ を/使う/に/は/? 検索対象ドキュメント群 検索 「AWS」「Elasticsearch」 といったキーワードを含むド キュメントのみがヒットする ▪セマンティック検索 機械学習モデルで ベクトル化(embedding) AWS上でElasticsearchを使うには? [0.8, 0.2, 0.3, ....] 検索対象ドキュメント群 検索 意味的に近い ドキュメントがヒットする ※検索ドキュメント群が事前に ベクトル化されている必要がある
Elasticsearchにおけるベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
7
Elasticsearchで学習済みモデルを利用するには Copyright © Acroquest Technology Co., Ltd. All rights reserved.
8 Kibana Elasticsearch 学習済みモデル ② Elandを利用して、 学習済みモデルを Elasticsearchに登録する ① 学習済みモデルを用意する (Hugging Face等を利用す る場合、適切なモデルを選 ぶのみ) ③ ドキュメント登録時/検 索時に登録済みモデルを 呼び出して利用する (ベクトル化)
Elasticsearch内でモデルを呼び出し可能 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
9
Elasticsearchでのベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
10 1. HNSWと呼ばれるアルゴリズムによって、 大量のベクトルが対象でも高速な類似検索が可能 ※script scoreクエリによるブルートフォースkNNも利用可能だが 高レイテンシーのため、厳密性を求めない限りは利用機会が少ないと思われる 2. バージョンアップとともに、利用可能なベクトル次元数も増加 (ver.8.11では4096次元のベクトルまで登録可能) 3. 詳細なクエリ記法はリファレンス参照 k-nearest neighbor (kNN) search | Elasticsearch Guide [8.11] | Elastic を参照
ご清聴ありがとうございました。 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
11
余談ですが.... Copyright © Acroquest Technology Co., Ltd. All rights reserved.
13 • 8.11で sparse_vector型が復活しました(実体はrank_feature型)