Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Elasticsearchにおけるベクトル検索(第57回Elasticsearch勉強会)
Search
樋口慎
December 18, 2023
Technology
0
420
Elasticsearchにおけるベクトル検索(第57回Elasticsearch勉強会)
第57回 Elasticsearch勉強会(LT大会)の発表資料です。
樋口慎
December 18, 2023
Tweet
Share
More Decks by 樋口慎
See All by 樋口慎
ChatGPTをどう使うか?(JJUGナイトセミナー5/23)
shin_higuchi
1
2.2k
elasticsearch_semantic_search.pdf
shin_higuchi
0
230
ElasticsearchでECサイトにおける高速検索/集計を実現する
shin_higuchi
3
1.3k
Elasticsearchによる質問応答~NLP機械学習モデルの利用~
shin_higuchi
1
8.8k
Other Decks in Technology
See All in Technology
Fabric 移行時の躓きポイントと対応策
ohata_ds
1
120
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
26
7k
【令和最新版】ロボットシミュレータ Genesis x ROS 2で始める快適AIロボット開発
hakuturu583
2
1.4k
The key to VCP-VCF
mirie_sd
0
150
20240522 - 躍遷創作理念 @ PicCollage Workshop
dpys
0
300
UI State設計とテスト方針
rmakiyama
4
940
NOT VALIDな検査制約 / check constraint that is not valid
yahonda
1
110
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
360
OPENLOGI Company Profile for engineer
hr01
1
17k
Alignment and Autonomy in Cybozu - 300人の開発組織でアラインメントと自律性を両立させるアジャイルな組織運営 / RSGT2025
ama_ch
1
1.4k
[Oracle TechNight#85] Oracle Autonomous Databaseを使ったAI活用入門
oracle4engineer
PRO
1
210
I could be Wrong!! - Learning from Agile Experts
kawaguti
PRO
8
2k
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Building Your Own Lightsaber
phodgson
104
6.2k
Scaling GitHub
holman
459
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
220
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Producing Creativity
orderedlist
PRO
343
39k
Transcript
Copyright © Acroquest Technology Co., Ltd. All rights reserved. 第57回Elasticsearch勉強会
Elasticsearchにおけるベクトル検索 Acroquest Technology 株式会社 Elastic Certified Engineer 樋口 慎 @shin0higuchi 1
自己紹介 ⚫ 名前:樋口 慎 ⚫ 所属:Acroquest Technology株式会社 ⚫ 業務:Elasticコンサルティング全般、データ分析、システム開発 ⚫
資格/執筆: 世界初「Elastic Certification」3種取得 Azure Solutions Architect Elasticsearch NEXT STEP 執筆
ベクトル検索のメリット Copyright © Acroquest Technology Co., Ltd. All rights reserved.
3
名称を知らないものを自然言語で検索するのは困難... Copyright © Acroquest Technology Co., Ltd. All rights reserved.
4 バッグクロージャー 袖ビーム グレービーボート ランチャーム
ベクトル化することで、自然言語に依らず検索が可能 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
5 画像1: [0.8, 0.2, 0.3, ....] 画像2: [0.0, 0.5, 0.2, ....] 画像3: [0.3, 0.4, 0.1, ....] 画像4: [0.4, 0.6, 0.2, ....] ベクトル化
文書のベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
6 ▪Elasticsearchの通常の検索 検索クエリを 形態素解析 AWS上でElasticsearchを使うには? AWS/上/で/Elasticsearch/ を/使う/に/は/? 検索対象ドキュメント群 検索 「AWS」「Elasticsearch」 といったキーワードを含むド キュメントのみがヒットする ▪セマンティック検索 機械学習モデルで ベクトル化(embedding) AWS上でElasticsearchを使うには? [0.8, 0.2, 0.3, ....] 検索対象ドキュメント群 検索 意味的に近い ドキュメントがヒットする ※検索ドキュメント群が事前に ベクトル化されている必要がある
Elasticsearchにおけるベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
7
Elasticsearchで学習済みモデルを利用するには Copyright © Acroquest Technology Co., Ltd. All rights reserved.
8 Kibana Elasticsearch 学習済みモデル ② Elandを利用して、 学習済みモデルを Elasticsearchに登録する ① 学習済みモデルを用意する (Hugging Face等を利用す る場合、適切なモデルを選 ぶのみ) ③ ドキュメント登録時/検 索時に登録済みモデルを 呼び出して利用する (ベクトル化)
Elasticsearch内でモデルを呼び出し可能 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
9
Elasticsearchでのベクトル検索 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
10 1. HNSWと呼ばれるアルゴリズムによって、 大量のベクトルが対象でも高速な類似検索が可能 ※script scoreクエリによるブルートフォースkNNも利用可能だが 高レイテンシーのため、厳密性を求めない限りは利用機会が少ないと思われる 2. バージョンアップとともに、利用可能なベクトル次元数も増加 (ver.8.11では4096次元のベクトルまで登録可能) 3. 詳細なクエリ記法はリファレンス参照 k-nearest neighbor (kNN) search | Elasticsearch Guide [8.11] | Elastic を参照
ご清聴ありがとうございました。 Copyright © Acroquest Technology Co., Ltd. All rights reserved.
11
余談ですが.... Copyright © Acroquest Technology Co., Ltd. All rights reserved.
13 • 8.11で sparse_vector型が復活しました(実体はrank_feature型)