Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of da...
Search
Shoichiro Nagai(shnagai)
February 25, 2021
Technology
1
2.2k
機械学習PJのデータ収集における課題を解決する データ基盤の取組み/Efforts of data infrastructure to solve problems in data collection of machine learning PJ
コネヒトマルシェオンライン「機械学習・データ分析」の資料です
Shoichiro Nagai(shnagai)
February 25, 2021
Tweet
Share
More Decks by Shoichiro Nagai(shnagai)
See All by Shoichiro Nagai(shnagai)
テックビジョンを活用した技術戦略の実践/Implementation-of-Technology-Strategy-leveraging-Tech-Vision
shoichiron
0
73
GoでBigQueryを操作する時にStructを使うか悩んでる話/go-bigquery-struct-worries
shoichiron
1
190
AWS Step Functions × AWS SAMで実現する家族ノートの低運用コストETL基盤/ kazokunote-stepfunctions-awssam-etl
shoichiron
4
5.2k
ECS×Fargateで実現する運用コストほぼ0なコンテナ運用の仕組み/ ecs fargate low cost operation
shoichiron
14
18k
ママリで動くカテゴリ類推エンジンの仕組み ~機械学習導入の4つの勘所を添えて~/mamari category analogy
shoichiron
0
800
SIGNATEの練習問題コンペで 57位までスコアを上げた話/ The story of the signate competition
shoichiron
2
5.9k
AWSサービスで実現するバッチ実行環境のコンテナ/サーバレス化/ Container service of batch execution environment realized by AWS service
shoichiron
11
7k
Fargateは何がうれしいのか/ fargate-whats-nice
shoichiron
4
11k
コンテナ導入の正攻法〜ママリのコンテナ移行舞台裏〜/Confrontation-of-Container-Transfer
shoichiron
1
3.8k
Other Decks in Technology
See All in Technology
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
170
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
280
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
12
10k
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
400
Database イノベーショントークを振り返る/reinvent-2025-database-innovation-talk-recap
emiki
0
220
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
3.4k
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
350
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
230
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
230
Microsoft Agent 365 についてゆっくりじっくり理解する!
skmkzyk
0
370
文字列の並び順 / Unicode Collation
tmtms
3
600
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
820
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Scaling GitHub
holman
464
140k
Designing for Performance
lara
610
69k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Building Adaptive Systems
keathley
44
2.9k
Designing for humans not robots
tammielis
254
26k
Transcript
ػցֶश1+ͷσʔλऩूʹ͓͚Δ՝Λղܾ͢Δ σʔλج൫ͷऔΈ ӬҪউҰ!TIOBHBJ ίωώτϚϧγΣΦϯϥΠϯʮػցֶशɾσʔλੳʯ
ࣗݾհ ओͳ׆ಈ "84Πϯϑϥؔ࿈Ͱͷొஃ͕ଟ͘ػցֶशΠϕϯτͰͷొஃճ ίωώτΤϯδχΞϒϩάIUUQTUFDIDPOOFIJUPDPNBSDIJWFBVUIPSOBHBJT ίωώτגࣜձࣾɹςΫϊϩδʔਪਐGɹ Πϯϑϥ/σʔλɾػցֶश @shnagai ӬҪউҰ
σʔλج൫Λ࡞Δ্Ͱɺ ಛʹػցֶश1+Ͱͷར༻ʹ͋ͨΓߟ͍͑ͯΔ͜ͱΛ͠·͢ɻ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά Aͱ͍͏՝Λղͨ͘Ίʹ ߦಈϩάͱϚελʔσʔλΛ ֻ͚߹ΘͤͯϞσϧΛ࡞Δͧʂʂ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά σʔλ͕ͳ͍ͱԿग़དྷͳ͍ͷͰɺ ·ͣඞཁͳσʔλΛϩʔΧϧʹ࣋ͬͯ͘Δ
ػցֶशΛͱΓ·͘σʔλੳڥͷ՝ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ᶆσʔλ४උऴΘͬͨͷͰ ੳͯ͠લॲཧͯ͠ϞσϦϯά͍ͯͧ͘͠ʂʂ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
ࢼߦࡨޡͷ্ɺखݩͰྑͦ͞͏ͳϞσϧ͕ग़དྷͨʂʂ
1P$͢ΔͨΊʹຊ൪Ͱಈ͘Ϟσϧ࡞Δͧʂʂ
Ϟσϧ࡞ͷલʹఆظతͳσʔλऩू͕ඞཁ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ϞσϧΛ࡞Δલʹɺ ᶃᶄᶅͷσʔλऩूͱܗ͢ΔॲཧΛॻ͍ͯ ຊ൪/stgͰಈ͔͢ඞཁ͕͋Δ… ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ
ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ
σʔλऩूͷॲཧߟ͑Δ͜ͱ͕ଟ͍ɻɻ ۀσʔλ Ϛελʔσʔλ ߦಈϩά ͦΕͧΕͲͷݖݶͰΞΫηε͢Ε͍͍ͷ͔? ͲͷDBࢀর͢Ε͍͍ͷ͔ͳ? ऩू͕࣮֬ʹग़དྷΔΑ͏ʹΤϥʔϋϯυϦϯά͠ͳ͍ͱ େྔͷσʔλ݁߹͢Δͷʹେ͖ͳίϯϐϡʔτࢿݯ͕ඞཁ ᶃԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর
ᶄԿ͔͠ΒͷखஈͰcsvμϯϩʔυ ϥΠϒϥϦ͔Βࢀর ᶅखݩʹඞཁͳσʔλ͕ἧ͔ͬͨΒ ੳ͍͢͠Α͏ʹpandasͰσʔλܗ खݩͰ࡞ͬͨσʔλΛఆظతʹߋ৽͍͚ͨͩ͠ͳͷʹ ѹతʹߟྀ͢Δ͜ͱ͕ଟ͘πϥΠ
ࣗલͰॻ͘ͱେมͳσʔλऩूσʔλج൫Ͱٵऩ
ඞཁͳσʔλલͬͯσʔλج൫Ͱऩू ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞
৽ͨʹσʔλऩूॲཧΛॻ͘ඞཁͳ͍ ۀσʔλ Ϛελʔσʔλ ࣍ͰඞཁͳσʔλΛBigQueryʹసૹ DataLake ߦಈϩά ۀσʔλ Ϛελʔσʔλ DataMart ML͔Βࢀর͢ΔϏϡʔ
DataWarehouse ूܭσʔλ ຊ൪/stgͰͷϞσϧ࡞ ։ൃڥͰͷϞσϧ࡞ ։ൃத
ࢦ͍ͯ͠Δະདྷ w %8)ج൫Λ͑Δ͜ͱͰػցֶश1+ʹ͓͚Δσʔλऩूͷ՝Λղܾ w .-ΤϯδχΞσʔλαΠΤϯςΟετ࠷ՁΛൃشग़དྷΔ ϞσϦϯάνϡʔχϯάʹྗ w εϐʔσΟʔʹػցֶशͷ1P$Λճͤͯ݁Ռͱͯ͠ޭ֬Λ্͛Δ
͞ΒͳΔαʔϏεͷػցֶश׆༻ͷΛݻΊΔͨΊʹ σʔλج൫Ұॹʹҭ͍ͯͯ͘ 8F`SF)JSJOH