Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習を用いた自然言語処理③
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
shu_suzuki
January 24, 2019
Technology
0
110
深層学習を用いた自然言語処理③
長岡技術科学大学 自然言語処理研究室
B3ゼミ発表資料
shu_suzuki
January 24, 2019
Tweet
Share
More Decks by shu_suzuki
See All by shu_suzuki
文献紹介:Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
shu_suzuki
0
190
文献紹介:Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
shu_suzuki
0
84
文献紹介: How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
shu_suzuki
0
340
文献紹介:Conversational Response Re-ranking Based on Event Causality and Role Factored Tensor Event Embedding
shu_suzuki
0
170
文献紹介:Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
shu_suzuki
0
77
文献紹介:ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation
shu_suzuki
0
210
文献紹介:Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
shu_suzuki
0
120
文献紹介:Why are Sequence-to-Sequence Models So Dull?
shu_suzuki
0
70
文献紹介:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
shu_suzuki
0
220
Other Decks in Technology
See All in Technology
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
260
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
520
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
170
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
330
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
22nd ACRi Webinar - 1Finity Tamura-san's slide
nao_sumikawa
0
110
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
230
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
350
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
250
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
150
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
Mobile First: as difficult as doing things right
swwweet
225
10k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Designing for Timeless Needs
cassininazir
0
130
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
From π to Pie charts
rasagy
0
130
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
57
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Skip the Path - Find Your Career Trail
mkilby
0
60
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Transcript
深層学習を用いた自然言語処理(3) seq2seqを用いた言語モデルによる文章生成 鈴木脩右 2019/1/24 長岡技術科学大学 自然言語処理研究室 1
目次 言語モデル seq2seq おわりに 2
言語モデル
言語モデルとは • 単語の並びに対して確率を与える • 自然な単語の並びかを確率で評価 例) 「You say goodbye」→ 高確率 「You
say good die」→ 低確率 • 様々なアプリケーションに応用可能 例)機械翻訳,対話システム • 確率分布により文章生成が可能 3
数式による表現 w1 , · · · , wm という順序で単語が出現する確率 (同時確率)
は次式で表される P(wt |w1 , · · · , wm ) = m t=1 P(wt |w1 , · · · , wt−1 ) 4
評価方法 モデルの予測性能を perplexity(確率の逆数) で評価 L = − 1 N n
t tnk log ynk perplexity = eL tnk :onehot ベクトルの正解ラベル, ynk :確率分布,L:損失関数 5
seq2seq
seq2seq(sequence to sequence)とは • 時系列データを別の時系列データに 変換するモデル • Encoder-Decoder モデルとも呼ばれる •
2 つの RNN モデルを利用する 6
RNN(Recurrent Neaural Network)とは • ループする経路を持っている • 一つ前の出力データが入力される • ht =
tanh(ht−1 Wh + xt Wx + b) Figure 1: RNN モ デル 7
RNN言語モデル Figure 2: RNN 言語モデル 8
RNNによる文章生成 Figure 3: 文章生成の流れ 9
Encoder-Decoderモデル • Encoder-文章を固定長のベクトルに変換する • Decoder-固定長のベクトルを受け取り,文章生成 Figure 4: Encoder-Decoder モデル 10
seq2seqの改良 • Encoder で固定長のベクトルに変換するため,長文に対応 できない → 単語ベクトルを行列にまとめて Decoder に渡す • Decoder
はまとまった行列を受け取れない → 対応関係にある単語の情報を抜き出す (Attention) • 行列と,単語の重要度の重み付き和で Attention を実現 → 単語の重要度は,固定長ベクトルと行列の類似度に よって算出される 11
おわりに
まとめ • 言語モデルは,単語の羅列を確率として解釈する • seq2seq は時系列データを別の時系列データに変換する • RNN はループする経路を持っている •
Encoder は文章をベクトルに変換する • Decoder はベクトルを受け取り,文章生成する • Attention という手法で,seq2seq を改良できる 12
参考文献 [1] 藤康毅. ゼロから作る Deep Learning ②. オライリー・ジャ パン,2018. [2]
高知宏. 自然言語処理と深層学習. オーム社,2017. 13