Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
深層学習を用いた自然言語処理③
Search
shu_suzuki
January 24, 2019
Technology
0
110
深層学習を用いた自然言語処理③
長岡技術科学大学 自然言語処理研究室
B3ゼミ発表資料
shu_suzuki
January 24, 2019
Tweet
Share
More Decks by shu_suzuki
See All by shu_suzuki
文献紹介:Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
shu_suzuki
0
190
文献紹介:Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
shu_suzuki
0
84
文献紹介: How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
shu_suzuki
0
340
文献紹介:Conversational Response Re-ranking Based on Event Causality and Role Factored Tensor Event Embedding
shu_suzuki
0
170
文献紹介:Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
shu_suzuki
0
77
文献紹介:ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation
shu_suzuki
0
210
文献紹介:Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
shu_suzuki
0
120
文献紹介:Why are Sequence-to-Sequence Models So Dull?
shu_suzuki
0
70
文献紹介:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
shu_suzuki
0
220
Other Decks in Technology
See All in Technology
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
230
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
配列に見る bash と zsh の違い
kazzpapa3
3
170
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
AzureでのIaC - Bicep? Terraform? それ早く言ってよ会議
torumakabe
1
620
Tebiki Engineering Team Deck
tebiki
0
24k
Claude Code for NOT Programming
kawaguti
PRO
1
110
22nd ACRi Webinar - 1Finity Tamura-san's slide
nao_sumikawa
0
110
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
580
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
58
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
Designing Experiences People Love
moore
144
24k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
70
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
760
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
190
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Done Done
chrislema
186
16k
HDC tutorial
michielstock
1
400
Transcript
深層学習を用いた自然言語処理(3) seq2seqを用いた言語モデルによる文章生成 鈴木脩右 2019/1/24 長岡技術科学大学 自然言語処理研究室 1
目次 言語モデル seq2seq おわりに 2
言語モデル
言語モデルとは • 単語の並びに対して確率を与える • 自然な単語の並びかを確率で評価 例) 「You say goodbye」→ 高確率 「You
say good die」→ 低確率 • 様々なアプリケーションに応用可能 例)機械翻訳,対話システム • 確率分布により文章生成が可能 3
数式による表現 w1 , · · · , wm という順序で単語が出現する確率 (同時確率)
は次式で表される P(wt |w1 , · · · , wm ) = m t=1 P(wt |w1 , · · · , wt−1 ) 4
評価方法 モデルの予測性能を perplexity(確率の逆数) で評価 L = − 1 N n
t tnk log ynk perplexity = eL tnk :onehot ベクトルの正解ラベル, ynk :確率分布,L:損失関数 5
seq2seq
seq2seq(sequence to sequence)とは • 時系列データを別の時系列データに 変換するモデル • Encoder-Decoder モデルとも呼ばれる •
2 つの RNN モデルを利用する 6
RNN(Recurrent Neaural Network)とは • ループする経路を持っている • 一つ前の出力データが入力される • ht =
tanh(ht−1 Wh + xt Wx + b) Figure 1: RNN モ デル 7
RNN言語モデル Figure 2: RNN 言語モデル 8
RNNによる文章生成 Figure 3: 文章生成の流れ 9
Encoder-Decoderモデル • Encoder-文章を固定長のベクトルに変換する • Decoder-固定長のベクトルを受け取り,文章生成 Figure 4: Encoder-Decoder モデル 10
seq2seqの改良 • Encoder で固定長のベクトルに変換するため,長文に対応 できない → 単語ベクトルを行列にまとめて Decoder に渡す • Decoder
はまとまった行列を受け取れない → 対応関係にある単語の情報を抜き出す (Attention) • 行列と,単語の重要度の重み付き和で Attention を実現 → 単語の重要度は,固定長ベクトルと行列の類似度に よって算出される 11
おわりに
まとめ • 言語モデルは,単語の羅列を確率として解釈する • seq2seq は時系列データを別の時系列データに変換する • RNN はループする経路を持っている •
Encoder は文章をベクトルに変換する • Decoder はベクトルを受け取り,文章生成する • Attention という手法で,seq2seq を改良できる 12
参考文献 [1] 藤康毅. ゼロから作る Deep Learning ②. オライリー・ジャ パン,2018. [2]
高知宏. 自然言語処理と深層学習. オーム社,2017. 13