Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
“JapanTaxi” アプリを支える データ分析基盤
Search
Shuichiro Aiba
September 19, 2018
Technology
3
1.4k
“JapanTaxi” アプリを支える データ分析基盤
2018/9/19の Google Cloud Next '18 in Tokyo の講演資料です。
Shuichiro Aiba
September 19, 2018
Tweet
Share
Other Decks in Technology
See All in Technology
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
250
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
780
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
410
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
6
2.3k
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2.1k
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Side Projects
sachag
455
43k
WENDY [Excerpt]
tessaabrams
9
36k
Practical Orchestrator
shlominoach
191
11k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
So, you think you're a good person
axbom
PRO
2
1.9k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
53
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
Leo the Paperboy
mayatellez
4
1.4k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Transcript
D1-1-S07 “JapanTaxi” アプリを支える データ分析基盤 饗庭 秀一郎 JapanTaxi 株式会社 データエンジニア 饗庭
秀一郎 2018 年 9 月 19 日
目次 • JapanTaxi と分析チームの紹介 • 社内分析基盤の紹介 • 分析基盤の運用方法 • 今後の
GCP の活用
JapanTaxi
データ分析チームのミッション データ活用に よる サービス開発 意思決定支援 のための データ構築 需要予測による AI 配車、
配車ロジック最適化、 データセンシング、など 分析データの整備と基盤構築、 レポーティング、施策分析、など 本日はこちらメイン
サービスの仕組み サーバサイド 配車システム ドライバー用アプリ JapanTaxi タクシー会社
分析に使うデータ 配車情報 決済情報 車両位置情報 アプリログ 広告 トラッキング ユーザ情報
データ分析基盤の構成 他クラウド サービス 社内メンバ AWS Kinesis AWS S3 DB Bigquery
PubSub Dataflow Strage App Engine Tableau SQL Slack spread sheet 外部サービス DataLab データソース データ転送 データ 保存 / 処理 データ出力/利用
GCP を使っている理由 • データ蓄積と処理の基盤となる BigQuery のメリット享受 パフォーマ ンス 運用 新機能
データ分析基盤の利用 データ分析基盤 セールス マーケティング 開発 ・地域のデータ ・タクシー会社のデータ ・アプリの利用状況 ・ボトルネック調査 ・不具合調査
・広告トラッキング ・ユーザ特性 システム ・外部サービスへの データ連携 経営層 ・KPI 等の重要数値確認 分析 ・依頼ベースの分析 ・データ活用施策の 前処理 / 事前分析
分析イメージ - セールスによる地域分析 あくまでイメージで実際のデータとは異なります
分析イメージ - ドライバー分析 あくまでイメージで実際のデータとは異なります
組織による分析軸の違い セールス • 時系列 • 会社 • 地域 分析 •
時系列 • 地域 • ユーザ • 流入 • 時系列 • 機能 • ユーザ • シナリオ マーケティング 開発
分析基盤に求められること • あらゆる関連データにアクセスできる ◦ いろんな場所に散在するデータの集約と共有 • すばやく見たい軸で自分で分析できる ◦ 組織ごとの観点での分析 ◦
地理的条件での分析 • 利用状況の客観的把握 ◦ データ保存量、テーブルの利用度 / タイミング
データの集約と共有 • 層を分けて社内提供 生データ系 Dataset 汎用分析用 Dataset アプリケー ション用 Dataset
・不要情報削除 ・重複除去 ・非正規化 ・データ間結合 目的に応じた集計 元データ クエリ クエリ 主にこれを公開 全件 or 差分 Tableau Online などシステム 元データ 元データ
組織ごとのセルフ分析のために • Betaの機能も積極的に使って性能・コストを最適化 Partitioned Table (based on TIMESTAMP column) Clustered
Table Ingestion time TIMESTAMP or DATE columns フィルタリングや集 計によく利用される 軸=カラム 利用者が意識しなくとも最適化される
地理的条件での分析 - GIS • 例:タクシー営業区域で集計可(行政区で構成される) 地域メッシュ 行政区域
利用状況の客観的把握 • GCP Census (OSS) でテーブル情報を日次で取得
利用状況の客観的把握 • クエリなどのジョブ情報を API から収集して管理
今後の GCP の活用 - ML 系サービスの活用 • VisionAPI, AutoML ドライブレコーダーの
映像解析による 車両のラベリングなど
一緒に働く仲間を募集しています データ分析 デザイナー セールス マーケティング フロントエンド サーバサイド ハードウェア コーポレート