に確率収束すること( ) 分散が に確率収束すること( ) とも言い換えられる。 An estimator is only unbiased if it is uniformly asymptotic normal and unbiased (UANU), as only UANU estimators can center valid standard Wald intervals for under the model M . θ ̂ θ ϵ > lim n→∞ Pr{| ̂ θn − θ| > ϵ} = 0 ̂ θ ̂ θ θ lim n→∞ E[ ̂ θn ] = θ 0 lim n→∞ V[ ̂ θn ] = 0 θ(P) T10.1: Bias and Consistency in Statistical Inference 5
に確率収束すること( ) 分散が に確率収束すること( ) とも言い換えられる。 An estimator is only unbiased if it is uniformly asymptotic normal and unbiased (UANU), as only UANU estimators can center valid standard Wald intervals for under the model M . θ ̂ θ ϵ > lim n→∞ Pr{| ̂ θn − θ| > ϵ} = 0 ̂ θ ̂ θ θ lim n→∞ E[ ̂ θn ] = θ 0 lim n→∞ V[ ̂ θn ] = 0 θ(P) T10.1: Bias and Consistency in Statistical Inference 39
Yi = β0 + β1 Ai + β2 Li + ui Yi = α0 + α1 Ai + vi ̂ α1 = SAY SAA = ∑ (Ai − ¯ A)(Yi − ¯ Y) ∑ (Ai − ¯ A)2 = ∑ wAi Yi = ∑ wAi (β0 + β1 Ai + β2 Li + ui ) = β1 + β2 SAL SAA + ∑ w2i ui E(α1 ) = β1 + β2 SAL SAA β2 SAL SAA SAL = 0 51 SAY = ∑ (Ai − ¯ A)(Yi − ¯ Y) SAA = ∑ (Ai − ¯ A)2 wAi = Ai − ¯ A ∑ (Ai − ¯ A)
+ β1 Ai + ϵi Yi = αo + α1 Ai + α2 L + vi ̂ α1 ̂ α1 = SLL SAY − SAL SLY SAA SLL − S2 AL = ∑ hi Yi = ∑ hi (β0 + β1 Ai + ϵi ) = β0 ∑ hi + β1 ∑ hi Ai + ∑ hi ϵi = β1 + ∑ hi ϵi E( ̂ α1 ) = β1 + ∑ hi E(ϵi ) = β1 53
(データ) 操作化 操作化 理論的関係 統計的検証 構成概念妥当性 独立変数 従属変数 外的妥当性 内的妥当性 経験・年齢 統計的結論 妥当性 コントロール変数 Libby et al. (2002)を参考に作成しました。 Libby, R., R. Bloomfield, and M. W. Nelson. 2002. Experimental research in financial accounting. Accounting, Organizations and Society 27 (8): 775–810. 55 参考:会計学でよく使われる研究デザインと妥当性の整理方法
R., R. Bloomfield, and M. W. Nelson. 2002. Experimental research in financial accounting. Accounting, Organizations and Society 27 (8): 775–810. 富山大学計量経済学講義資料 唐渡広志先生 http://www3.u-toyama.ac.jp/ kkarato/2017/econometrics/handout/Econometrics-2017-23-1219.pdf [2020/07/10アクセス] 参考文献 56