Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
疫学・統計セミナー:疾病の発生の測定
Search
Shuntaro Sato
December 04, 2019
Science
0
860
疫学・統計セミナー:疾病の発生の測定
疫学・統計セミナー第2回目の動画です.
疾病の発生を発生割合・オッズ・発生率・有病率で測定する考え方を説明しています.
Youtube:
https://youtu.be/fuB7Gp8Qo28
Shuntaro Sato
December 04, 2019
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
180
仮説検定とP値
shuntaros
8
10k
Target trial emulationの概要
shuntaros
2
3.3k
Win ratio その2
shuntaros
0
500
Win ratioとは何か?
shuntaros
0
2.8k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.1k
「回帰分析から分かること」と「変数選択」
shuntaros
16
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.6k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.7k
Other Decks in Science
See All in Science
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
390
Online Feedback Optimization
floriandoerfler
0
2.3k
学術講演会中央大学学員会府中支部
tagtag
0
270
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
500
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
640
統計学入門講座 第4回スライド
techmathproject
0
140
Lean4による汎化誤差評価の形式化
milano0017
1
240
データベース02: データベースの概念
trycycle
PRO
2
750
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
180
機械学習 - SVM
trycycle
PRO
1
840
統計学入門講座 第1回スライド
techmathproject
0
350
統計学入門講座 第3回スライド
techmathproject
0
100
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
A better future with KSS
kneath
239
17k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
Embracing the Ebb and Flow
colly
86
4.7k
Transcript
࣬පͷൃੜͷଌఆ $IVOUBSP !4IVOUBSPPP 15 Ӹֶɾ౷ܭηϛφʔ
16 0WFSWJFX w ࣬පͷൃੜͷଌఆ w ൃੜׂ߹ʢϦεΫʣɾΦοζ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQ w ൃੜ
w ༗ප
Ӹֶʹ͓͚Δଌఆ 17
࣬පʢ0VUDPNFʣͷൃੜఔͷ ԿͰԿΛଌఆ͢Δ͔ʁ 18 0VUDPNFNFBTVSFT ࿈ଓईɼॱংई ໊ٛई ׂ߹ɼΦοζɼ ฏۉɼதԝ .FBTVSFTPGBTTPDJBUJPO ΞτΧϜͱཁҼͱͷؔ࿈Λଌఆ
ϦεΫࠩɼϦεΫൺɼΦοζൺɼൺɼճؼ
ई 19 ईʢ4DBMFʣ ྫ ଌఆ 2VBMJUBUJWF PS $BUFHPSJDBM ໊ٛʢOPNJOBMʣ ʢ#JOBSZ
%JDIPUPNPVTʣ ࢮੜଘ ࣬පͷ͋Γͳ͠ ਓछ ࠃ ੑผ ׂ߹ Φοζ ॱংʢPSEJOBMʣ ॏ 20- தԝ ׂ߹ 2VBOUJUBUJWF PS $POUJOVPVT ࿈ଓʢ$POUJOVPVTʣ ྸ ମॏ ऩೖ ฏۉ தԝ
ूஂதͷ࣬පൃੜͷଌఆ 20
ͭͷࢦඪ 21 ࣬පͷൃੜجຊతʹͭͷࢦඪͰଌఆ͢Δ ൃੜׂ߹ʢ*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ*ODJEFODF0EETʣ ൃੜʢ*ODJEFODFSBUFʣ
༗පʢ1SFWBMFODFʣ
ൃੜׂ߹ʢ*ODJEFODFQSPQPSUJPO *1ʣ 22 w ूஂͷฏۉϦεΫൃੜׂ߹ w ʮϦεΫʯͱ͍͏ݴ༿ਓͷਓؒʹରͯ͠͏͜ͱ͕ଟ͍ w ʮൃੜׂ߹ʯूஂʹରͯ͠͏ "͞Μ
#͞Μ $͞Μ %͞Μ ݚڀͰڵຯ͋Δ࣬ප IP = (risk) = ͋ΔҰఆظؒʹ࣬පʹ͔͔ͬͨਓ ͦͷظؒʹௐࠪ͞Εͨਓ 0 1 2 3 4 5 Year
ൃੜׂ߹ͷྑ͍ɾҙ 23 w ൃੜׂ߹ઐՈͰͳͯ͘ଟ͘ͷਓʹཧղ͍͢͠ w Ͳͷ͙Β͍മ࿐հೖ͕ΞτΧϜʹӨڹΛ༩͑ͨͷ͔͍ࣔ͢͠ w ਓͷूஂʹ͋ΔհೖΛ͓͜ͳͬͨ߹ɼ͋ΔΞτΧϜΛ ਓ͔ΒਓʹݮΒ͢͜ͱ͕Ͱ͖Δ ྑ͍
w ؍ظؒΛ໌ه͠ͳ͍ͱղऍෆೳ w ্ͷྫͷ߹ɼ͕؍ظؒͳͷ͔͕؍ظؒͳͷ͔Ͱ ղऍ͕ҟͳΔ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQʢෆೳྫʣʹΑΓաখධՁ ʹͳΔ ҙ
ڝ߹ϦεΫʢ$PNQFUJOHSJTLʣ 24 ڵຯͷ͋ΔΞτΧϜ͕ൃੜ͢ΔલʹɼଞͷΞτΧϜͷൃੜʹΑΓ ݚڀର͔Βআ֎͞Εͯ͠·͏͜ͱ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ٤Ԏ ഏ͕Μͷൃੜ
$2 ࣄނࢮ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ͔͢͠Δͱ IP = 1 3 IP = 2 3 ڝ߹ϦεΫ աখධՁ w ؍ظ͕ؒظؒͰ͋Εɼڝ߹ϦεΫͷӨڹ௨ৗখ͍͞ w ڵຯͷ͋ΔΞτΧϜ͕શࢮҼʹΑΔࢮͰ͋Εɼڝ߹ϦεΫ ى͜Βͳ͍
-PTTUPGPMMPXVQʢෆೳྫʣ 25 Ҿӽ͠ಉҙఫճͰɼ͢Δ͜ͱ͕Ͱ͖ͳ͘ͳΔ͜ͱ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ٤Ԏ ഏ͕Μͷൃੜ $2
Ҿӽ͠ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ͔͢͠Δͱ IP = 1 3 IP = 2 3 -PTTUPGPMMPXVQ աখධՁ ؍ظؒதͷ-PTTUPGPMMPXVQ͕ଟ͍ݚڀղऍ͢Δͷ͕ࠔ
ൃੜΦοζʢ*ODJEFODF0EETʣ 26 ͋ΔҰఆظؒʹ ࣬පʹ͔͔ͬͨਓ ͦͷظؒʹ ௐࠪ͞Εͨਓ ൃੜׂ߹ ൃੜΦοζ ൃੜׂ߹
ൃੜׂ߹ w Φοζׂ߹ΑΓײతʹΘ͔ΓͮΒ͍ w ϩδεςΟοΫճؼੳͰɼΦοζ͕ܭࢉ͞ΕΔ
ׂ߹ͱΦοζͱͷؔ 27 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50
0.75 1.00 Proportion Odds 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 Proportion Odds w ׂ߹͕ेখ͚͞ΕʢҎԼఔʣɼΦοζׂ߹ʹۙࣅͰ͖Δ w Φοζׂ߹ͷؔৗʹΓཱͭ w ΦοζͰͷաେධՁʹҙ
࣌ؒͷ֓೦Λಋೖ 28 w ͋Δूஂʹ͓͚Δ࣬පͷൃੜΛଌఆ͢ΔͨΊʹɼ ूஂͰͷ࣬පͷൃੜׂ߹Λଌఆ͢Δ͚ͩͰෆे w ؍ظؒͷ໌ه͕ඞཁ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQͷଘࡏ ࣌ؒͷ֓೦͕ॏཁ
Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology (Vol. 3). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.ͷFigure 3-1Λࢀߟ 5JNF 5JNF ࢮ ʮࠨͷूஂͷํ͕ࢮʯ͕ߴ͍ͱ͍͏දݱࣗવ
ൃੜʢ*ODJEFODFSBUF *3ʣ 29 "͞Μ #͞Μ $͞Μ %͞Μ &͞Μ '͞Μ IR
= ڵຯͷ͋ΔΞτΧϜΛൃੜͨ͠ਓ ௐࠪ͞Εͨਓͷ࣌ؒͷ߹ܭ 0 1 2 3 4 5 Year ٤Ԏ ഏ͕Μͷൃੜ $2 ഏ͕Μͷൃੜ ࣄނࢮˠڝ߹ϦεΫ Ҿӽ͠ˠ-PTTUPGPMMPXVQ = 3 3 + 5 + 2 + 4 + 2 + 2 = 3 18 ≃ 0.17 ࣌ؒͷ֓೦ΛऔΓೖΕͨ࣬පͷൃੜͷࢦඪ QFSTPOUJNFʢਓ࣌ؒʣ
ൃੜͷղऍ 30 w ൃੜׂ߹ͱҧ͍ɼҎ্औΓಘΔ w ୯ҐʹΑΓɼ͕มԽ͢Δ 100 cases person −
year 10,000 cases person − century 8.33 cases person − month 1.92 cases person − week 0.27 cases person − day × 100 / 12 months / 52 weeks / 365 days ʢਓ-࣌ؒʣͷมԽ
ൃੜͷྑ͍ɾҙ 31 w ൃੜׂ߹ΑΓɼڝ߹ϦεΫ-PTTUPGPMMPXVQͷӨڹΛऑΊΔ͜ ͱ͕Ͱ͖Δ ྑ͍ w ൃੜׂ߹ΑΓղऍͮ͠Β͍ w ظؒΛ௨ͯ͠ɼൃੜ͕Ұఆͱ͍͏Ծఆ͕͋Δ
w ࣌ؒͱͱʹൃੜ͕มԽ͢Δ߹ɼੜଘ࣌ؒղੳ w ڝ߹ϦεΫͷղܾͰ͖ͨΘ͚Ͱͳ͍ ҙ
ൺɾׂ߹ɾ 32 ൺ 3BUJP ୯७ʹͭͷΛׂͬͨ ׂ߹ 1SPQPSUJPO શମʹର͢Δ෦Λ શମͰׂͬͨ
3BUF ʹ࣌ؒͷ֓೦ؚ͕·ΕΔ
༗පʢ1SFWBMFODFʣ 33 w ͋Δ࣌Ͱ࣬පʹ͔͔͍ͬͯΔਓΛ ͦͷ࣌ͷશݚڀରऀͰׂͬͨ w Ͱͳׂ͘߹ w ্ؾಓײછɼൃੜߴ͍͕ɼ ͙͢ʹճ෮͢ΔͨΊ୯Ͱͷ༗ප͍ͩΖ͏
w ຫੑ࣬ױɼൃੜͯ͘ɼ ጶපظ͕͍ؒͨΊ༗පߴ͍ͩΖ͏ "͞Μ #͞Μ $͞Μ %͞Μ 0 1 2 3 4 5 Year 0/4 = 0 2/4 = 0.5 1/3 = 0.33 1/2 = 0.5
34 ࠓޙͷྲྀΕ ʢਫʣ Ӹֶͱʁ ࣬පͷൃੜͷଌఆ ҼՌύΠ ൃੜׂ߹ɼɼ༗ප ϦεΫൺɼϦεΫࠩɼΦοζൺɼൺ ʢۚʣ ࣬පͱཁҼͱͷؔ࿈
ϦεΫൺɼϦεΫࠩɼΦοζൺɼൺ ʢʣ Ӹֶݚڀͷྨ ίϗʔτݚڀɼ έʔείϯτϩʔϧݚڀɼ ϥϯμϜԽൺֱࢼݧ 5BSHFUUSJBM ʢۚʣ ਪఆɾݕఆɾਫ਼ ਖ਼֬Ͱଥͳਪఆͱʁ όΠΞε ৴པ۠ؒɼ1 ʢਫʣ ҼՌਪɾҼՌϞσϧ ޮՌͱؔ࿈ͷҧ͍ɼ%"(ɼ ަབྷҼࢠͷ੍ޚํ๏ ࠓޙ ҼՌਪͰ༻͍ΒΕΔ౷ܭղੳ ʢείΞɼࠩͷࠩੳɼෆ࿈ଓճؼσβΠϯͳͲʣ ײੳɼܽଌσʔλͷॲཧ
4QFDJBM5IBOLT 35 w ຖिҰॹʹؤுͬͯΔ.PEFSO&QJͷօ͞Μʢ5XJUUFSʣ w ࠓճಛʹ!@WPM@EF@OVJU͞Μɼ!NQI@GPS@EPDUPST͞Μɼࢀ ߟʹͳΓ·ͨ͠ɽʢ5XJUUFSʣ w ͍ͭॿݴ͍͚ͯͨͩ͠Δ!LPSP͞Μɼ!%S@,*%@͞Μɼ !OVUFQJ͞Μʢ5XJUUFSʣ
5IBOLZPVWFSZNVDI
5BLF)PNFNFTTBHF 36 w ࣬පͷൃੜͷଌఆ w ൃੜׂ߹ʢϦεΫʣɾΦοζ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQ w ൃੜ
w ༗ප w ׂ߹ʢ1SPQPSUJPOʣͱʢ3BUFʣҧ͏
ࢀߟจݙͱҾ༻จݙ 3PUINBO ,+ (SFFOMBOE 4 -BTI 5- .PEFSOFQJEFNJPMPHZ
7PM 1IJMBEFMQIJB8PMUFST,MVXFS)FBMUI-JQQJODPUU8JMMJBNT8JMLJOT w Ӹֶʹ͍ͭͯ·ͱ·͍ͬͯΔɽҼՌਪʹॏ৺Λஔ͘ςΩετɽղɽ 3PUINBO ,+ ϩεϚϯͷӸֶՊֶతࢥߟͷ༠ࣰ͍ݪग़൛ࣾ w ΑΓ؆୯ͳ༰ +PIO .- "EJDUJPOBSZPGFQJEFNJPMPHZ0YGPSE6OJWFSTJUZ1SFTT w ࣙॻ͔ͩΒͦ͜ɼͱͯಡΈ͍͢ӳޠͰӸֶ༻ޠΛઆ໌͍ͯ͠Δ ୮ޙढ़࿕ দҪໜ೭ ৽൛ҩֶ౷ܭֶϋϯυϒοΫேॻళ ୮ޙढ़࿕ খఃଇ ҩֶ౷ܭֶͷࣄయேॻళ 37