Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
疫学・統計セミナー:疾病の発生の測定
Search
Shuntaro Sato
December 04, 2019
Science
0
840
疫学・統計セミナー:疾病の発生の測定
疫学・統計セミナー第2回目の動画です.
疾病の発生を発生割合・オッズ・発生率・有病率で測定する考え方を説明しています.
Youtube:
https://youtu.be/fuB7Gp8Qo28
Shuntaro Sato
December 04, 2019
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
仮説検定とP値
shuntaros
8
9.5k
Target trial emulationの概要
shuntaros
2
3k
Win ratio その2
shuntaros
0
460
Win ratioとは何か?
shuntaros
0
2.5k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
920
「回帰分析から分かること」と「変数選択」
shuntaros
16
19k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.4k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.5k
何が知りたいのか?〜どのぐらい?に答える〜(医学統計学・疫学セミナー)
shuntaros
0
2.3k
Other Decks in Science
See All in Science
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
270
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
110
小杉考司(専修大学)
kosugitti
2
610
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.4k
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
150
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
610
Introduction to Image Processing: 2.Frequ
hachama
0
480
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
680
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
220
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
460
観察研究における因果推論
nearme_tech
PRO
1
160
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
180
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
We Have a Design System, Now What?
morganepeng
51
7.4k
RailsConf 2023
tenderlove
29
1k
Become a Pro
speakerdeck
PRO
26
5.2k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Building Applications with DynamoDB
mza
93
6.2k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
How STYLIGHT went responsive
nonsquared
98
5.4k
Docker and Python
trallard
44
3.3k
Done Done
chrislema
182
16k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
640
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Transcript
࣬පͷൃੜͷଌఆ $IVOUBSP !4IVOUBSPPP 15 Ӹֶɾ౷ܭηϛφʔ
16 0WFSWJFX w ࣬පͷൃੜͷଌఆ w ൃੜׂ߹ʢϦεΫʣɾΦοζ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQ w ൃੜ
w ༗ප
Ӹֶʹ͓͚Δଌఆ 17
࣬පʢ0VUDPNFʣͷൃੜఔͷ ԿͰԿΛଌఆ͢Δ͔ʁ 18 0VUDPNFNFBTVSFT ࿈ଓईɼॱংई ໊ٛई ׂ߹ɼΦοζɼ ฏۉɼதԝ .FBTVSFTPGBTTPDJBUJPO ΞτΧϜͱཁҼͱͷؔ࿈Λଌఆ
ϦεΫࠩɼϦεΫൺɼΦοζൺɼൺɼճؼ
ई 19 ईʢ4DBMFʣ ྫ ଌఆ 2VBMJUBUJWF PS $BUFHPSJDBM ໊ٛʢOPNJOBMʣ ʢ#JOBSZ
%JDIPUPNPVTʣ ࢮੜଘ ࣬පͷ͋Γͳ͠ ਓछ ࠃ ੑผ ׂ߹ Φοζ ॱংʢPSEJOBMʣ ॏ 20- தԝ ׂ߹ 2VBOUJUBUJWF PS $POUJOVPVT ࿈ଓʢ$POUJOVPVTʣ ྸ ମॏ ऩೖ ฏۉ தԝ
ूஂதͷ࣬පൃੜͷଌఆ 20
ͭͷࢦඪ 21 ࣬පͷൃੜجຊతʹͭͷࢦඪͰଌఆ͢Δ ൃੜׂ߹ʢ*ODJEFODFQSPQPSUJPOʣ ൃੜΦοζʢ*ODJEFODF0EETʣ ൃੜʢ*ODJEFODFSBUFʣ
༗පʢ1SFWBMFODFʣ
ൃੜׂ߹ʢ*ODJEFODFQSPQPSUJPO *1ʣ 22 w ूஂͷฏۉϦεΫൃੜׂ߹ w ʮϦεΫʯͱ͍͏ݴ༿ਓͷਓؒʹରͯ͠͏͜ͱ͕ଟ͍ w ʮൃੜׂ߹ʯूஂʹରͯ͠͏ "͞Μ
#͞Μ $͞Μ %͞Μ ݚڀͰڵຯ͋Δ࣬ප IP = (risk) = ͋ΔҰఆظؒʹ࣬පʹ͔͔ͬͨਓ ͦͷظؒʹௐࠪ͞Εͨਓ 0 1 2 3 4 5 Year
ൃੜׂ߹ͷྑ͍ɾҙ 23 w ൃੜׂ߹ઐՈͰͳͯ͘ଟ͘ͷਓʹཧղ͍͢͠ w Ͳͷ͙Β͍മ࿐հೖ͕ΞτΧϜʹӨڹΛ༩͑ͨͷ͔͍ࣔ͢͠ w ਓͷूஂʹ͋ΔհೖΛ͓͜ͳͬͨ߹ɼ͋ΔΞτΧϜΛ ਓ͔ΒਓʹݮΒ͢͜ͱ͕Ͱ͖Δ ྑ͍
w ؍ظؒΛ໌ه͠ͳ͍ͱղऍෆೳ w ্ͷྫͷ߹ɼ͕؍ظؒͳͷ͔͕؍ظؒͳͷ͔Ͱ ղऍ͕ҟͳΔ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQʢෆೳྫʣʹΑΓաখධՁ ʹͳΔ ҙ
ڝ߹ϦεΫʢ$PNQFUJOHSJTLʣ 24 ڵຯͷ͋ΔΞτΧϜ͕ൃੜ͢ΔલʹɼଞͷΞτΧϜͷൃੜʹΑΓ ݚڀର͔Βআ֎͞Εͯ͠·͏͜ͱ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ٤Ԏ ഏ͕Μͷൃੜ
$2 ࣄނࢮ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ͔͢͠Δͱ IP = 1 3 IP = 2 3 ڝ߹ϦεΫ աখධՁ w ؍ظ͕ؒظؒͰ͋Εɼڝ߹ϦεΫͷӨڹ௨ৗখ͍͞ w ڵຯͷ͋ΔΞτΧϜ͕શࢮҼʹΑΔࢮͰ͋Εɼڝ߹ϦεΫ ى͜Βͳ͍
-PTTUPGPMMPXVQʢෆೳྫʣ 25 Ҿӽ͠ಉҙఫճͰɼ͢Δ͜ͱ͕Ͱ͖ͳ͘ͳΔ͜ͱ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ٤Ԏ ഏ͕Μͷൃੜ $2
Ҿӽ͠ "͞Μ #͞Μ $͞Μ ഏ͕Μͷൃੜ ͔͢͠Δͱ IP = 1 3 IP = 2 3 -PTTUPGPMMPXVQ աখධՁ ؍ظؒதͷ-PTTUPGPMMPXVQ͕ଟ͍ݚڀղऍ͢Δͷ͕ࠔ
ൃੜΦοζʢ*ODJEFODF0EETʣ 26 ͋ΔҰఆظؒʹ ࣬පʹ͔͔ͬͨਓ ͦͷظؒʹ ௐࠪ͞Εͨਓ ൃੜׂ߹ ൃੜΦοζ ൃੜׂ߹
ൃੜׂ߹ w Φοζׂ߹ΑΓײతʹΘ͔ΓͮΒ͍ w ϩδεςΟοΫճؼੳͰɼΦοζ͕ܭࢉ͞ΕΔ
ׂ߹ͱΦοζͱͷؔ 27 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50
0.75 1.00 Proportion Odds 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 Proportion Odds w ׂ߹͕ेখ͚͞ΕʢҎԼఔʣɼΦοζׂ߹ʹۙࣅͰ͖Δ w Φοζׂ߹ͷؔৗʹΓཱͭ w ΦοζͰͷաେධՁʹҙ
࣌ؒͷ֓೦Λಋೖ 28 w ͋Δूஂʹ͓͚Δ࣬පͷൃੜΛଌఆ͢ΔͨΊʹɼ ूஂͰͷ࣬පͷൃੜׂ߹Λଌఆ͢Δ͚ͩͰෆे w ؍ظؒͷ໌ه͕ඞཁ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQͷଘࡏ ࣌ؒͷ֓೦͕ॏཁ
Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology (Vol. 3). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.ͷFigure 3-1Λࢀߟ 5JNF 5JNF ࢮ ʮࠨͷूஂͷํ͕ࢮʯ͕ߴ͍ͱ͍͏දݱࣗવ
ൃੜʢ*ODJEFODFSBUF *3ʣ 29 "͞Μ #͞Μ $͞Μ %͞Μ &͞Μ '͞Μ IR
= ڵຯͷ͋ΔΞτΧϜΛൃੜͨ͠ਓ ௐࠪ͞Εͨਓͷ࣌ؒͷ߹ܭ 0 1 2 3 4 5 Year ٤Ԏ ഏ͕Μͷൃੜ $2 ഏ͕Μͷൃੜ ࣄނࢮˠڝ߹ϦεΫ Ҿӽ͠ˠ-PTTUPGPMMPXVQ = 3 3 + 5 + 2 + 4 + 2 + 2 = 3 18 ≃ 0.17 ࣌ؒͷ֓೦ΛऔΓೖΕͨ࣬පͷൃੜͷࢦඪ QFSTPOUJNFʢਓ࣌ؒʣ
ൃੜͷղऍ 30 w ൃੜׂ߹ͱҧ͍ɼҎ্औΓಘΔ w ୯ҐʹΑΓɼ͕มԽ͢Δ 100 cases person −
year 10,000 cases person − century 8.33 cases person − month 1.92 cases person − week 0.27 cases person − day × 100 / 12 months / 52 weeks / 365 days ʢਓ-࣌ؒʣͷมԽ
ൃੜͷྑ͍ɾҙ 31 w ൃੜׂ߹ΑΓɼڝ߹ϦεΫ-PTTUPGPMMPXVQͷӨڹΛऑΊΔ͜ ͱ͕Ͱ͖Δ ྑ͍ w ൃੜׂ߹ΑΓղऍͮ͠Β͍ w ظؒΛ௨ͯ͠ɼൃੜ͕Ұఆͱ͍͏Ծఆ͕͋Δ
w ࣌ؒͱͱʹൃੜ͕มԽ͢Δ߹ɼੜଘ࣌ؒղੳ w ڝ߹ϦεΫͷղܾͰ͖ͨΘ͚Ͱͳ͍ ҙ
ൺɾׂ߹ɾ 32 ൺ 3BUJP ୯७ʹͭͷΛׂͬͨ ׂ߹ 1SPQPSUJPO શମʹର͢Δ෦Λ શମͰׂͬͨ
3BUF ʹ࣌ؒͷ֓೦ؚ͕·ΕΔ
༗පʢ1SFWBMFODFʣ 33 w ͋Δ࣌Ͱ࣬පʹ͔͔͍ͬͯΔਓΛ ͦͷ࣌ͷશݚڀରऀͰׂͬͨ w Ͱͳׂ͘߹ w ্ؾಓײછɼൃੜߴ͍͕ɼ ͙͢ʹճ෮͢ΔͨΊ୯Ͱͷ༗ප͍ͩΖ͏
w ຫੑ࣬ױɼൃੜͯ͘ɼ ጶපظ͕͍ؒͨΊ༗පߴ͍ͩΖ͏ "͞Μ #͞Μ $͞Μ %͞Μ 0 1 2 3 4 5 Year 0/4 = 0 2/4 = 0.5 1/3 = 0.33 1/2 = 0.5
34 ࠓޙͷྲྀΕ ʢਫʣ Ӹֶͱʁ ࣬පͷൃੜͷଌఆ ҼՌύΠ ൃੜׂ߹ɼɼ༗ප ϦεΫൺɼϦεΫࠩɼΦοζൺɼൺ ʢۚʣ ࣬පͱཁҼͱͷؔ࿈
ϦεΫൺɼϦεΫࠩɼΦοζൺɼൺ ʢʣ Ӹֶݚڀͷྨ ίϗʔτݚڀɼ έʔείϯτϩʔϧݚڀɼ ϥϯμϜԽൺֱࢼݧ 5BSHFUUSJBM ʢۚʣ ਪఆɾݕఆɾਫ਼ ਖ਼֬Ͱଥͳਪఆͱʁ όΠΞε ৴པ۠ؒɼ1 ʢਫʣ ҼՌਪɾҼՌϞσϧ ޮՌͱؔ࿈ͷҧ͍ɼ%"(ɼ ަབྷҼࢠͷ੍ޚํ๏ ࠓޙ ҼՌਪͰ༻͍ΒΕΔ౷ܭղੳ ʢείΞɼࠩͷࠩੳɼෆ࿈ଓճؼσβΠϯͳͲʣ ײੳɼܽଌσʔλͷॲཧ
4QFDJBM5IBOLT 35 w ຖिҰॹʹؤுͬͯΔ.PEFSO&QJͷօ͞Μʢ5XJUUFSʣ w ࠓճಛʹ!@WPM@EF@OVJU͞Μɼ!NQI@GPS@EPDUPST͞Μɼࢀ ߟʹͳΓ·ͨ͠ɽʢ5XJUUFSʣ w ͍ͭॿݴ͍͚ͯͨͩ͠Δ!LPSP͞Μɼ!%S@,*%@͞Μɼ !OVUFQJ͞Μʢ5XJUUFSʣ
5IBOLZPVWFSZNVDI
5BLF)PNFNFTTBHF 36 w ࣬පͷൃੜͷଌఆ w ൃੜׂ߹ʢϦεΫʣɾΦοζ w ڝ߹ϦεΫɼ-PTTUPGPMMPXVQ w ൃੜ
w ༗ප w ׂ߹ʢ1SPQPSUJPOʣͱʢ3BUFʣҧ͏
ࢀߟจݙͱҾ༻จݙ 3PUINBO ,+ (SFFOMBOE 4 -BTI 5- .PEFSOFQJEFNJPMPHZ
7PM 1IJMBEFMQIJB8PMUFST,MVXFS)FBMUI-JQQJODPUU8JMMJBNT8JMLJOT w Ӹֶʹ͍ͭͯ·ͱ·͍ͬͯΔɽҼՌਪʹॏ৺Λஔ͘ςΩετɽղɽ 3PUINBO ,+ ϩεϚϯͷӸֶՊֶతࢥߟͷ༠ࣰ͍ݪग़൛ࣾ w ΑΓ؆୯ͳ༰ +PIO .- "EJDUJPOBSZPGFQJEFNJPMPHZ0YGPSE6OJWFSTJUZ1SFTT w ࣙॻ͔ͩΒͦ͜ɼͱͯಡΈ͍͢ӳޠͰӸֶ༻ޠΛઆ໌͍ͯ͠Δ ୮ޙढ़࿕ দҪໜ೭ ৽൛ҩֶ౷ܭֶϋϯυϒοΫேॻళ ୮ޙढ़࿕ খఃଇ ҩֶ౷ܭֶͷࣄయேॻళ 37