Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI Company
Search
Sungjoo Ha
May 24, 2022
Technology
0
970
AI Company
Google cloud academy 발표 자료
Sungjoo Ha
May 24, 2022
Tweet
Share
More Decks by Sungjoo Ha
See All by Sungjoo Ha
AI in Social Discovery -- Blending Research and Production
shurain
2
1.2k
Bridging the Gap: AI Research and Real-World Deployment in AI Companies
shurain
0
620
AI Company
shurain
0
250
제품에 기여하는 머신러닝 -- 연구에서 고객까지
shurain
0
260
Research in Production Environment
shurain
0
2.3k
Zen of NumPy
shurain
1
1k
Other Decks in Technology
See All in Technology
読んで学ぶ Amplify Gen2 / Amplify と CDK の関係を紐解く #jawsug_tokyo
tacck
PRO
1
260
彩の国で始めよう。おっさんエンジニアから共有したい、当たり前のことを当たり前にする技術
otsuki
0
160
Рекомендации с нуля: как мы в Lamoda превратили главную страницу в ключевую точку входа для персонализированного шоппинга. Данил Комаров, Data Scientist, Lamoda Tech
lamodatech
0
810
Dynamic Reteaming And Self Organization
miholovesq
3
660
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
280
AWSのマルチアカウント管理 ベストプラクティス最新版 2025 / Multi-Account management on AWS best practice 2025
ohmura
4
340
SmartHR プロダクトエンジニア求人ガイド_2025 / PdE job guide 2025
smarthr
0
180
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
4
750
Aspire をカスタマイズしよう & Aspire 9.2
nenonaninu
0
190
Winning at PHP in Production in 2025
beberlei
1
200
AIでめっちゃ便利になったけど、結局みんなで学ぶよねっていう話
kakehashi
PRO
1
420
営業向け誰でも話せるOCIセールストーク
oracle4engineer
PRO
2
100
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Faster Mobile Websites
deanohume
306
31k
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Being A Developer After 40
akosma
91
590k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
570
Transcript
AI Company Google Cloud Academy Hyperconnect Director of AI Sungjoo
Ha May 24th, 2022 Sungjoo Ha 1
AI Company • য়ט ઁ: AI company • ੋఠ֔ ӝࣿਸ
ੜ ഝਊೠ ӝস internet companyۄ ࠛ۷Ҋ ח ݽ߄ੌ दө য • Amazon, Alphabet, Facebook, Alibaba, Tencent, etc. • AI द AI companyח ޖ ܳө? • ݽܰ݅ ѐੋਵ۽ ࢤп೮؍ ݻ о ನੋী ೠ ࣗѐ Sungjoo Ha 2
ࣳೝށ + ਢࢎ ≠ Internet Company Sungjoo Ha 3
Jeff Bezos in 1997 In the book space, there are
more than three million different books worldwide active and in print at any given time across all languages, so when you have that many items, you can literally build a store online that couldn't exist any other way. Sungjoo Ha 4
Aggregators • Zero marginal cost • ٣ణ ইమਸ ౸ݒೞחؘী ୶о
࠺ਊ ٜ ঋ • Distributionী ࠺ਊ ٜ ঋ • Transactionী ࠺ਊ ٜ ঋ • ܳ ӓೠਵ۽ ഝਊೠ Ѫ ҳӖա ಕझ࠘җ э super-aggregator • ੋఠ֔ী ઓೞח Ѫ value proposition ইש • ੋఠ֔ ࢜۽ ח оܳ ߉ইٜҊ ੋఠ֔ ইפݶ ࢿ݀ೡ ࣻ হח ࠺ૉפझܳ ݅ٝ Sungjoo Ha 5
Internet-Enabled Technology • Internet द ӝࣿ • ੋఠ֔ दী ਢಕח
݅ ੋఠ֔ਵ۽ ੋ೧ оמ೧ ӝࣿਸ ഝਊೞח ӝস ઁೠ • ਬ ೯زী ೠ ࣻਸ ߄ఔਵ۽ ࢎਊܳ ೧ೞח Ѫ • ೠ ߊ աইоࢲ A/B test ೞח Ѫ • 1֙ী ೠ ف ߣ ߓನೞ؍ Ѫ • Continuous integration, continuous deployment ١ਵ۽ ݒੌݒੌ ߓನ • ӓױਵ۽ ૣ ఠۨ࣌ ࢎਸ ٜ݅যղҊ product-market-fitਸ ӝ ਤ೧ ࡅܰѱ ח Ѫ оמ೧ • ܳ оמாೞח ઑ ҳઑ Sungjoo Ha 6
Learnings From The Past • Internet company द۽ࠗఠ ࢤп೧ࠁח AI
company • AIо ইפݶ ࢿ݀غ ঋח ࠺ૉפझ • ӝઓী ഃ ࠛоמೞ؍ Ѫ оמ೧ח Ѫ • ઑӘ ؊ ևѱ ೧ࢳ೧ࠁݶ AI दী оמ೧ ࢜۽ ӝࣿਸ ੜ ഝਊೞ ח ഥࢎ Sungjoo Ha 7
Modern ML • അ ࠗ࠙ "AI"ۄ ܻࠛח Ѫ بणী Ӕрਸ
فҊ • ীࢲ ܳ Ҋ ܳ ח Ѫ • ҃ઁ ࠗооܳ о ݆ ٜ݅য ղח Ѫ ب//࠺ب/ъച ण ࣽࢲ • п ޙઁب ѾҴ بण ޙઁ۽ ജೞח ߑߨٜ ߊѼغҊ ਵݴ ী ٮܲ ࢿҗо աয়ח Sungjoo Ha 8
Supervised Learning Examples • male/female • ҃/ߓ҃ •
ೠҴয য • োয ࢸݺ • োয ࢸݺ • ҟҊ, ਬ ܼ • ݂ ܼ Sungjoo Ha 9
Algorithm + Compute + Data • ML ޙઁীࢲ ݏׯڰܻח ف
о ޙઁ • ݽ؛ ࢿמ णࣇীࢲ ծ ҃ • underfitting: ݽ؛ ࣻਊ۱ ૐо • ݽ؛ ࢿמ పझࣇীࢲ ծ ҃ • overfitting: ؘఠ ୶о • അ ML ӝࣿ ݽ؛ ࣻਊ۱(capacity)ਸ ޖೠ טܾ ࣻ • ܳ جܻӝ ਤೠ ҅ ਗҗ • ࠙ೠ ন ؘఠ݅ ਵݶ ҅ࣘ ࢿמ જই • 2010֙ ୡ߈ ীח ۠ ѐ֛ হਵݴ ୭Ӕ ٜয ۠ ܴ ؊ ъചغҊ Sungjoo Ha 10
Solvable Problems • അ AI ӝࣿ۽ ಽ ࣻ ח ޙઁ
• ಣߧೠ ࢎۈ 1ୡ ب दрਸ ٜৈࢲ ಽ ࣻ ח ޙઁ • द௫झܳ ஏೞח ޙઁ • ҳઑܳ צ ݽٚ ޙઁח زചؼ Ѫ Sungjoo Ha 11
AI Strategy • ܲ ۨযٜ যڃ ࢤпਸ ೞҊ ਸө? AI
ۚ ަө? • ٜ ৈ۞ оמࢿਸ ࠁݶࢲ ߬ೞҊ • Google: AI 3ਃࣗܳ ೠ ۽ ݽف ы୶Ҋ ח ݻ উغח ӝস • OpenAI: Ѣ ݽ؛ী ೠ ъೠ ਸ ాೠ ߬ • Tesla: അઓೞח ӝࣿਸ ӓೠਵ۽ ഝਊೞח ߡ౭ஸ ా Sungjoo Ha 12
ӝઓഥࢎ + AI/ML/DL ≠ AI Company Sungjoo Ha 13
Zero Marginal Content • AIо ইפݶ ࢿ݀ೡ ࣻ হח ࠺ૉפझח
ޖ ੌө? • ݻ о ൦ח • Zero marginal cost content creation • GPT-3 (copilot), DALL·E 2 • Super-human decision making • AlphaGo, AlphaFold Sungjoo Ha 14
AI-Enabled Technology • ӝসٜঠ নೠ ߬ਸ ೡ ࣻ ݅
ഥࢎח যڌѱ? • AI दীח ੋఠ֔ द ܴҗ ࠺तೞѱ AI ݽ؛ ٜ ࢎਊೡ Ѫ • ৈӝীࢲ بػ 2ରੋ ѐ֛/ӝࣿ/ޙചܳ ݃ա ੜ ഝਊೞջب ਃೠ ನੋо ؼ Ѫ • ݃ A/B పझܳ ೞח ഥࢎ৬ ইצ ഥࢎо աҊ • CI/CDܳ ഝਊೞח ഥࢎ৬ ইפפ ഥࢎо աח Ѫۢ Sungjoo Ha 15
Learned Business Logic • ࠺ૉפझ ۽ -> ݽ؛ Үജ •
࠺ૉפझ ۽: A ݶ B • ۽Ӓېݠٜ ٜ݅যղח ٘ ݆ ࠗ࠙ ࠺ૉפझ ۽ • ѱ ޤо ؘܲ? ۽Ӓېݠо ೞܖݶ ٜ݅؍Ѧ ҡ ML ॄࢲ ೠ׳ Ѧ۰ࢲ ݅٘ח Ѣ ইפঠ? • ࢎۈࠁ ੜ ೡ ࣻ ח ҃о • Aݶ Bীࢲ A ઑѤ ցޖցޖ ࠂ೮ݶ ࢎۈ ޅೣ • Software 2.0 Sungjoo Ha 16
Software Rot • ࠺ૉפझ ۽ب ࣗਝযب ॅ • ߸ ജ҃
߄Շӝ ٸޙ • ࢜۽ ӝמ ࢤӝҊ, ઁಿਸ Ցয оҊ ೞח ߑೱ ߄ՇҊ, ࢎਊо ߄ՇҊ... Ӓېࢲ ॅ • ࠁా Ѧ যڌѱ ೞջ? ࣗਝয ূפযо ٘ܳ ࣻ • Aݶ B ೮חؘ ઁח Aݶ C ೧ঠ ೠ • Ӕؘ ѱ ݽ؛ݶ • ࣘਵ۽ ؘఠ ࣻೞҊ ܳ ߄ఔਵ۽ ݽ؛ ঌইࢲ ജ҃ী • ؘఠ ऺݶ ࢿמب ؊ જই ࣻ Sungjoo Ha 17
Example • ോܻझ౮ vs ݽ؛ • द ࢎۈ ݅ٚ ോܻझ౮
જওਵա ࣘਵ۽ ࢿמ ೞۅ • ݽ؛ द աࡍਵա ࣘਵ۽ ࢿמ ࢚ थ Sungjoo Ha 18
Ideal • ݽٚ ࢎ Ѿ ਃೠ Ҕী ݽ؛ਸ ഝਊ •
ݽٚ Ѫ زച • ҳӖ द • ݂ झாેਸ زਵ۽ ೞѱ ೞৈ ؘఠࣃఠ պߑ࠺ܳ 40 ಌࣃ х • ౠ ࠺ૉפझ/۽؋ ਃ ޙઁܳ AI ޙઁ۽ ജೡ ࣻ ਵݶ ߬झ • Ӓ۞ݶ ҅ࣘ೧ࢲ ࣘਵ۽ ઁಿ ѐࢶغח ҃ਸ ೡ ࣻ ਸ Ѫ Sungjoo Ha 19
Easy? • औ֎? No • ML/ঌҊ્ܻ, ҅ਗ, ؘఠ ыঠ
ೣ • ݅ ॶݽӝ ਤ೧ ೦࢚ ఠޖפ হ ݆ ҅ਗҗ ؘఠо ਃೞח ঋ • ೡ ࣻח ח ب • Ӓېب ݆ਸࣻ۾ ٙ • ӒܻҊ അ ӝࣿ۽ب оמ • ҙ۲ػ ঠӝ ઑӘ ؊ ೧ࠁݶ... Sungjoo Ha 20
ML Model • ೠػ ؘఠ۽ જ Ѿҗܳ যղ۰ݶ ݽ؛ ஏݶ
Ҋ ݆ ਃ • AI ӝࣿ ߊ ࣘبо • ী ղܽ Ѿۿ ࢜۽ ӝࣿ աয়ݶࢲ Ҋغযঠ ೞח ҃ب ݆ • ୭न ӝࣿ زೱਸ ੜ ಝঠ ೣ • ݽ؛۞ٜ ࣗਝয ূפয݂ب ੜೞח Ѫ ൨ٝ • ݽ؍ೠ ஶపց ӝ߈ ূפয݂ী ೠ Ҋ ਃ • ӝࣿ Բ݅ ߄Շযࢲ ࡅܰѱ ٮۄоࠁݶ ߸҃ ݆ • ഈস ҳઑী ೠ Ҋ ਃ Sungjoo Ha 21
Compute • ݽ؛ਸ ٜ݅ӝ ਤ೧ ҅ ਗ ਃ •
҅ ਗਸ ؘఠ۽ ߄Բח ҃ب ݆ • AlphaGo • Data augmentation • ݽ؛ ࢲࡂب য۰ Sungjoo Ha 22
MLOps • ؘఠ ۄੋ • ࣘਵ۽ ݽ؛ णೞח ۄੋ •
ݽ؛ ࢿמ ز ಣо • ز ݽ؛ ߓನ • Shadow mode Sungjoo Ha 23
Data • ઁಿਸ ా೧ ؘఠܳ ദٙೡ ࣻ ח ؘఠ ۚ
ਃ • যڃ ؘఠܳ যڌѱ ࣻೡө? • যڌѱ ਸ ਸө? • Negative sampling ١ • human-in-the-loop दझమਸ যڌѱ ੜ ೡө? • ݽ؛ ੜ ೞҊ ח যڌѱ ࣘਵ۽ ݽפఠ݂ೞ? • ా ؘఠ ਝযೞझ Sungjoo Ha 24
AI PM • ۽؋ ਃ ޙઁܳ AI ޙઁ۽ যڌѱ ജೡ
ࣻ ਸө? • ܳ ా೧ ࢎਊٜ ݅بо য়ܰҊ ؊ ݆ ؘఠܳ ٜ݅যղҊ ؊ ա ઁಿਵ۽ যח • ਸ ӝ ए ҃ب Ҋ য۰ ҃ب Ҋ • AI ӝࣿਸ ೧ೞҊ ী ݏ ઁಿਸ э ҳࢿ೧ঠ ೣ • ӝദী ೠ ࢎ ࣗాਸ ਤೠ ࢜۽ য/بҳ/۽ࣁझ ਃ Sungjoo Ha 25
TikTok • ߑೠ ন బஎ • ন ਸ ࠁೠח Ѻೞী
ӏݽ ݃ாਸ ాೠ ݽٚ פ ൚ࣻ • ࣚऔѱ బஎܳ ٜ݅ ࣻ ب۾ ب৬ח নೠ ઁ بҳ ઁҕ • ݺߔೠ ਸ ਵ۽ ਸ ࣻ ח ߑधਵ۽ UIܳ ҳࢿ • ೠ ߣী ೞա ࠺٣য়݅ ࠁݴ ࢎਊ swipe ৈࠗ۽ ஂೱਸ ݺߔೞѱ ഛੋ • implicit feedback -> explicit feedback • ஏ ӝ߈ ࢎਊ ݽ؛݂ • ױࣽ ੋध(recognition)ীࢲ Ӓח Ѫ ইפۄ ࢎਊо যڌѱ ೯زೞח ݺߔೠ ೖ٘ߔਸ ߉ب۾ ҳࢿ Sungjoo Ha 26
Culture • ੌೞח ߑध, ޙചب ਃ • AI ӝദۄחѱ ই
ઓೞח ঋ • Ӓ۞ࠁפ э যڌѱ ੌೡী ೧ࢲب Ҋ೧ࠊঠ ೣ • ݽٚ ઑ/ҳࢿਗ ী ೠ Ӓܿਸ ݠ݁ࣘী ыҊ ӝৈ೧ঠ ೣ • ࢎ Ѿӂٜب ח ࣻળਵ۽ AIী ೧ ೧೧ঠ • ઑҳઑب ۞ೠ ղਊਸ ߈೧ঠ • Conway ߨ Sungjoo Ha 27
Conclusion • AI ӝࣿਸ ా೧ ী ೡ ࣻ হ؍ Ѫਸ
ೡ ࣻ ח ഥࢎٜ ࢤӡ Ѫ • AI ӝࣿ ݅ ੜ ഝਊೞח Ѫਵ۽ ର߹ചח оמ • ӝࣿী ೠ ೧৬ ઑ ҳઑ ߂ সޖ ߑध ߂ ޙച ١ নೠ ஏݶীࢲ Ҋ۰೧ঠ AI ӝࣿਸ ੜ ഝਊೡ ࣻ • ࢎ Ѿ ܖযח ݽٚ Ҕীࢲ ݽ؛ ഝਊؼ ৈо • ۽؋ ਃೠ ޙઁܳ AI ޙઁ۽ ജೞݶ ࢚ • ܳ ߄ఔਵ۽ ML ݽ؛ ѐࢶ ۽؋ ѐࢶਵ۽ যҊ ח ؊ ݆ ؘఠ۽ য ח ࢶࣽജ ҳઑܳ ٜ݅যյ ࣻ Sungjoo Ha 28