Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初めての機械学習PJを やってみて得た知見
Search
yaginuuun
November 05, 2019
Technology
2
4.5k
初めての機械学習PJを やってみて得た知見
Connehito Marché vol.6 〜機械学習・データ分析市〜 / 2019-11-05
にて発表
yaginuuun
November 05, 2019
Tweet
Share
More Decks by yaginuuun
See All by yaginuuun
メルカリホーム画面におけるレコメンド改善事例 - Long-tailを考慮した辞書拡張
shyaginuma
3
1.3k
メルカリにおけるA/Bテストワークフローの改善 これまでとこれから
shyaginuma
2
1.6k
メルカリにおけるA/Bテスト標準化への取り組み
shyaginuma
21
13k
A/BテストにおけるVariance reduction
shyaginuma
2
2.3k
過去コンペベースの学習をやってみたら意外と良かった話
shyaginuma
0
690
Kaggleもくもく会イントロ
shyaginuma
0
180
1on1 SQL Introduction at Globis
shyaginuma
1
1.3k
SlackへのKPI通知Botを作ったら いろいろ捗った話
shyaginuma
1
2.2k
BigQueryMLハンズオン勉強会
shyaginuma
3
910
Other Decks in Technology
See All in Technology
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
320
SA Night #2 FinatextのSA思想/SA Night #2 Finatext session
satoshiimai
1
140
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
1
1.1k
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
17
6.7k
バックエンドエンジニアのためのフロントエンド入門 #devsumiC
panda_program
18
7.5k
利用終了したドメイン名の最強終活〜観測環境を育てて、分析・供養している件〜 / The Ultimate End-of-Life Preparation for Discontinued Domain Names
nttcom
2
190
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
710
RECRUIT TECH CONFERENCE 2025 プレイベント【高橋】
recruitengineers
PRO
0
160
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
Building Products in the LLM Era
ymatsuwitter
10
5.4k
急成長する企業で作った、エンジニアが輝ける制度/ 20250214 Rinto Ikenoue
shift_evolve
3
1.3k
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Building an army of robots
kneath
303
45k
Embracing the Ebb and Flow
colly
84
4.6k
Building Adaptive Systems
keathley
40
2.4k
Making Projects Easy
brettharned
116
6k
Producing Creativity
orderedlist
PRO
344
39k
KATA
mclloyd
29
14k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
初めての機械学習PJを やってみて得た知見 Connehito Marché vol.6 〜機械学習・データ分析市〜 グロービス 柳沼慎哉 / 2019-11-05
自己紹介 • データサイエンティスト@グロービス ◦ DW保守運用 ◦ ダッシュボード構築 ◦ プロダクト分析 ◦
レコメンド開発 ⬅ Now • 2018新卒(もうすぐ三年目!!) • kaggleもくもく会@麹町 運営してます twitter: @yaginuuun
会社紹介 • 国内最大規模の経営大学院、ビジネススクールを運営 • 最近e-learningへ進出(グロービス学び放題) ◦ 時間、場所の制約なく学べるサービスの提供 • 他にも色々やってます ◦
ベンチャーキャピタルによる投資 ◦ 書籍の出版 ◦ G1サミット(経営者会議)の運営
何をやったか グロービス知見録という自社メディアに学び放題への導線が存在
どうやったのか 従来の仕組み:タグ一致 • 知見録と学び放題でタグが一致したコンテンツを表示 • タグ運用が手動(たまに漏れが発生) 改良後:コンテンツ同士の類似度 • 知見録と学び放題で類似度の高いコンテンツを表示 •
タグに寄らず、関連コンテンツを表示できる(漏れが発生しない)
結果
結果
得た知見
• リーン的な考え方に近い(Minimum Viable Product) • 改善のポテンシャルが見える • 結果を見せながら議論できるので担当者間の連携がしやすくなる 知見① 簡単でも良いのでまず結果を見える形にする
• エムスリーの西場さんがおっしゃっていて、自分でやって改めて実感 ◦ 成功確率高い ◦ 工数少ない 知見② ルール→アルゴリズムへの置き換えは有効 エムスリーの機械学習チームビルディングの考え方 by
@m_nishiba / @Machine Learning Team Building Pitchより引用
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 知見③ kaggleは役に立つ
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 • こんな資料もあります:カグルとジツム 知見③ kaggleは役に立つ
まとめ • いろんな知見が得られた ◦ 超シンプルでも良いので一旦アウトプットを見える形にすると進みが良 い ◦ ルールベース → アルゴリズムベースへの置き換えは有効
◦ kaggleは役に立つ • 一方でやらなきゃいけないこともたくさん ◦ モデルの運用周り ◦ パイプライン設計、構築 ◦ 後々手を入れやすい設計、コーディング • 常にやっていき