Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初めての機械学習PJを やってみて得た知見
Search
yaginuuun
November 05, 2019
Technology
2
4.6k
初めての機械学習PJを やってみて得た知見
Connehito Marché vol.6 〜機械学習・データ分析市〜 / 2019-11-05
にて発表
yaginuuun
November 05, 2019
Tweet
Share
More Decks by yaginuuun
See All by yaginuuun
メルカリホーム画面におけるレコメンド改善事例 - Long-tailを考慮した辞書拡張
shyaginuma
3
1.6k
メルカリにおけるA/Bテストワークフローの改善 これまでとこれから
shyaginuma
2
1.9k
メルカリにおけるA/Bテスト標準化への取り組み
shyaginuma
21
14k
A/BテストにおけるVariance reduction
shyaginuma
2
2.8k
過去コンペベースの学習をやってみたら意外と良かった話
shyaginuma
0
770
Kaggleもくもく会イントロ
shyaginuma
0
240
1on1 SQL Introduction at Globis
shyaginuma
1
1.4k
SlackへのKPI通知Botを作ったら いろいろ捗った話
shyaginuma
1
2.3k
BigQueryMLハンズオン勉強会
shyaginuma
3
960
Other Decks in Technology
See All in Technology
CQRS/ESになぜアクターモデルが必要なのか
j5ik2o
0
760
産業的変化も組織的変化も乗り越えられるチームへの成長 〜チームの変化から見出す明るい未来〜
kakehashi
PRO
1
420
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
180
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
630
AIと融ける人間の冒険
pujisi
0
110
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
520
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
4
21k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
AI に「学ばせ、調べさせ、作らせる」。Auth0 開発を加速させる7つの実践的アプローチ
scova0731
0
160
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
5.7k
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
140
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
12k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Writing Fast Ruby
sferik
630
62k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
38
Believing is Seeing
oripsolob
0
22
Faster Mobile Websites
deanohume
310
31k
Unsuck your backbone
ammeep
671
58k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Amusing Abliteration
ianozsvald
0
84
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
The Language of Interfaces
destraynor
162
26k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Transcript
初めての機械学習PJを やってみて得た知見 Connehito Marché vol.6 〜機械学習・データ分析市〜 グロービス 柳沼慎哉 / 2019-11-05
自己紹介 • データサイエンティスト@グロービス ◦ DW保守運用 ◦ ダッシュボード構築 ◦ プロダクト分析 ◦
レコメンド開発 ⬅ Now • 2018新卒(もうすぐ三年目!!) • kaggleもくもく会@麹町 運営してます twitter: @yaginuuun
会社紹介 • 国内最大規模の経営大学院、ビジネススクールを運営 • 最近e-learningへ進出(グロービス学び放題) ◦ 時間、場所の制約なく学べるサービスの提供 • 他にも色々やってます ◦
ベンチャーキャピタルによる投資 ◦ 書籍の出版 ◦ G1サミット(経営者会議)の運営
何をやったか グロービス知見録という自社メディアに学び放題への導線が存在
どうやったのか 従来の仕組み:タグ一致 • 知見録と学び放題でタグが一致したコンテンツを表示 • タグ運用が手動(たまに漏れが発生) 改良後:コンテンツ同士の類似度 • 知見録と学び放題で類似度の高いコンテンツを表示 •
タグに寄らず、関連コンテンツを表示できる(漏れが発生しない)
結果
結果
得た知見
• リーン的な考え方に近い(Minimum Viable Product) • 改善のポテンシャルが見える • 結果を見せながら議論できるので担当者間の連携がしやすくなる 知見① 簡単でも良いのでまず結果を見える形にする
• エムスリーの西場さんがおっしゃっていて、自分でやって改めて実感 ◦ 成功確率高い ◦ 工数少ない 知見② ルール→アルゴリズムへの置き換えは有効 エムスリーの機械学習チームビルディングの考え方 by
@m_nishiba / @Machine Learning Team Building Pitchより引用
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 知見③ kaggleは役に立つ
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 • こんな資料もあります:カグルとジツム 知見③ kaggleは役に立つ
まとめ • いろんな知見が得られた ◦ 超シンプルでも良いので一旦アウトプットを見える形にすると進みが良 い ◦ ルールベース → アルゴリズムベースへの置き換えは有効
◦ kaggleは役に立つ • 一方でやらなきゃいけないこともたくさん ◦ モデルの運用周り ◦ パイプライン設計、構築 ◦ 後々手を入れやすい設計、コーディング • 常にやっていき