Upgrade to Pro — share decks privately, control downloads, hide ads and more …

NANO266 - 05 - Exchange-Correlation Functionals

NANO266 - 05 - Exchange-Correlation Functionals

Shyue Ping Ong

April 07, 2015
Tweet

More Decks by Shyue Ping Ong

Other Decks in Education

Transcript

  1. What’s next? LDA uses local density ρ from homogenous electron

    gas Next step: Let’s add a gradient of the density! Generalized gradient approximation (GGA) NANO266 2 E xc GGA[ρ↑,ρ↓]= drρ(r)εxc ( ∫ ρ↑,ρ↓, ∇ρ↑ , ∇ρ↓ )
  2. Unlike the Highlander, there is more than “one” GGA • 

    BLYP, 1988: Exchange by Axel Becke based on energy density of atoms, one parameter + Correlation by Lee-Yang-Parr •  PW91, 1991: Perdew-Wang 91Parametrization of real-space cut-off procedure •  PBE, 1996: Perdew-Burke-Ernzerhof (re- parametrization and simplification of PW91) •  RPBE, 1999: revised PBE, improves surface energetics •  PBEsol, 2008: Revised PBE for solids NANO266 3
  3. Performance of GGA GGA tends to correct LDA overbinding • 

    Better bond lengths, lattice parameters, atomization energies, etc. NANO266 4
  4. Why stop at the first derivative? Meta-GGA Example: TPSS functional

    NANO266 5 E xc meta−GGA[ρ↑,ρ↓]= drρ(r)εxc ( ∫ ρ↑,ρ↓, ∇ρ↑ , ∇ρ↓ ,∇2ρ↑,∇2ρ↓) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids., Phys. Rev. Lett., 2003, 91, 146401, doi:10.1103/PhysRevLett.91.146401.
  5. Hybrids NANO266 6 Chimera from God of War (memories of

    times when I was still a carefree graduate student) HF DFT
  6. Rationale for Hybrids Semi-local DFT suffer from the dreaded self-

    interaction error •  Spurious interaction of the electron not completely cancelled with approximate Exc NANO266 7 E ee = 1 2 ρi (r i )ρj (r j ) r ij dr i dr j ∫∫ E x HF = − 1 2 ρi (r i )ρj (r j ) r ij dr i dr j ∫∫ Includes interaction of electron with itself! HF Exchange cancels self- interaction by construction
  7. Typical Hybrid Functionals B3LYP (Becke 3-parameter, Lee-Yang-Parr) •  Arguably the

    most popular functional in quantum chemistry (the 8th most cited paper in all fields) •  Originally fitted from a set of atomization energies, ionization potentials, proton affinities and total atomic energies. PBE0: HSE (Heyd-Scuseria-Ernzerhof) (2006): •  Effectively PBE0, but with an adjustable parameter controlling the range of the exchange interaction. Hence, known as a screened hybrid functional •  Works remarkably well for extended systems like solids NANO266 8 E xc B3LYP = E x LDA + a o (E x HF − E x LDA )+ a x (E x GGA − E x LDA )+ E c LDA +(E c GGA − E c LDA ) where a 0 = −0.20, a x = 0.72, a c = 0.81 E xc PBE0 = 1 4 E x HF + 3 4 E x PBE + E c PBE E xc HSE = aE x HF,SR (ω)+(1− a)E x PBE,SR (ω)+ E x PBE,LR (ω)+ E c PBE a = 1 4 , ω = 0.2
  8. Do hybrids work? NANO266 9 Heyd, J.; Peralta, J. E.;

    Scuseria, G. E.; Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd- Scuseria-Ernzerhof screened hybrid functional., J. Chem. Phys., 2005, 123, 174101, doi:10.1063/1.2085170.
  9. Do hybrids work? NANO266 10 Chevrier, V. L.; Ong, S.

    P.; Armiento, R.; Chan, M. K. Y.; Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds, Phys. Rev. B, 2010, 82, 075122, doi:10.1103/ PhysRevB.82.075122.
  10. To answer that question, we need to go back to

    our trade-off trinity NANO266 13 Choose two (sometimes you only get one) Accuracy Computational Cost System size
  11. Accuracy of functionals – lattice parameters LDA overbinds GGA and

    meta GGA largely corrects that overbinding NANO266 14 Haas, P.; Tran, F.; Blaha, P. Calculation of the lattice constant of solids with semilocal functionals, Phys. Rev. B - Condens. Matter Mater. Phys., 2009, 79, 1–10, doi:10.1103/PhysRevB.79.085104.
  12. Cohesive energies LDA cohesive energies too low, i.e., overbinding Again,

    GGA does much better NANO266 15 Philipsen, P. H. T.; Baerends, E. J. Cohesive energy of 3d transition metals: Density functional theory atomic and bulk calculations, Phys. Rev. B, 1996, 54, 5326–5333, doi:10.1103/PhysRevB.54.5326.
  13. Conclusion – LDA vs GGA LDA almost always underpredicts bond

    lengths, lattice parameters and overbinds GGA error is smaller, but less systematic. Error in GGA < 1% in many cases Conclusion •  Very little reason to choose LDA over GGA since computational cost are similar Note: In all cases, we assume that LDA and GGA refers to spin-polarized versions. NANO266 17
  14. Predicting structure Atomic energy: -1894.074 Ry Fcc V : -1894.7325

    Ry Bcc V : -1894.7125 Ry Cohesive energy = 0.638 Ry (0.03% of total E) Fcc/bcc difference = 0.02 Ry (0.001% of total E) Mixing energies ~ 10-6 fraction of total E NANO266 18 Ref: MIT 3.320 Lectures on Atomistic Modeling of Materials
  15. bcc vs fcc in GGA NANO266 19 Green: Correct Ebcc-fcc

    Red: Incorrect Ebcc-fcc Note: Based on structures at STP Wang, Y.; Curtarolo, S.; Jiang, C.; Arroyave, R.; Wang, T.; Ceder, G.; Chen, L. Q.; Liu, Z. K. Ab initio lattice stability in comparison with CALPHAD lattice stability, Calphad Comput. Coupling Phase Diagrams Thermochem., 2004, 28, 79–90, doi:10.1016/j.calphad. 2004.05.002.
  16. Magnetism NANO266 20 Wang, L.; Maxisch, T.; Ceder, G. Oxidation

    energies of transition metal oxides within the GGA+U framework, Phys. Rev. B, 2006, 73, 195107, doi:10.1103/PhysRevB.73.195107.
  17. Atomization energies, ionization energies and electron affinities Carried out over

    G2 test set of molecules (note that PBE1PBE in the tables below refers to the PBE0 functional) NANO266 21 Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke- Ernzerhof exchange-correlation functional, J. Chem. Phys., 1999, 110, 5029–5036, doi:10.1063/1.478401.
  18. Reaction energies Broad conclusions •  GGA better than LSDA • 

    Hybrids most efficient (good accuracy comparable to highly correlated methods) NANO266 22