two different external potentials, V a and V b , (with corresponding Hamiltonians H a and H b ) consistent with the same ground state density, ρ0 . Let the ground state wave function and energy for each Hamiltonian be ψ0 and E 0 . From the variational theorem: E 0,a < ψ0,b H a ψ0,b E 0,a < ψ0,b H a − H b ψ0,b + ψ0,b H b ψ0,b E 0,a < ψ0,b V a −V b ψ0,b + E 0,b E 0,a < (V a −V b )ρ0 (r)dr ∫ + E 0,b Similarly, E 0,b < (V b −V a )ρ0 (r)dr ∫ + E 0,a Summing the two, we have E 0,a + E 0,b < E 0,b + E 0,a