Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
会社の公開ページとKnowledge Base for Amazon Bedrockを使っ...
Search
そのだ
February 19, 2024
Technology
0
460
会社の公開ページとKnowledge Base for Amazon Bedrockを使ってRAG作ってみた
【Doorkeeper】
JAWS-UG沖縄 生成AI特集! 2024年02月
https://jaws-ug-okinawa.doorkeeper.jp/events/167464
そのだ
February 19, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
0
830
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
80
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
810
AIエージェントに脈アリかどうかを分析させてみた
sonoda_mj
2
250
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
480
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
140
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
450
AWSでRAGを作る方法
sonoda_mj
1
570
緑一色アーキテクチャ
sonoda_mj
2
290
Other Decks in Technology
See All in Technology
AIに目を奪われすぎて、周りの困っている人間が見えなくなっていませんか?
cap120
1
430
【CEDEC2025】ブランド力アップのためのコンテンツマーケティング~ゲーム会社における情報資産の活かし方~
cygames
PRO
0
240
AI によるドキュメント処理を加速するためのOCR 結果の永続化と再利用戦略
tomoaki25
0
410
解消したはずが…技術と人間のエラーが交錯する恐怖体験
lamaglama39
0
190
【CEDEC2025】現場を理解して実現!ゲーム開発を効率化するWebサービスの開発と、利用促進のための継続的な改善
cygames
PRO
0
720
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
190
LLMをツールからプラットフォームへ〜Ai Workforceの戦略〜 #BetAIDay
layerx
PRO
1
870
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
1
1.8k
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
310
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
180
Mambaで物体検出 完全に理解した
shirarei24
2
210
【OptimizationNight】数理最適化のラストワンマイルとしてのUIUX
brainpadpr
1
260
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Into the Great Unknown - MozCon
thekraken
40
2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
2.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Unsuck your backbone
ammeep
671
58k
Designing Experiences People Love
moore
142
24k
4 Signs Your Business is Dying
shpigford
184
22k
The Cult of Friendly URLs
andyhume
79
6.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Statistics for Hackers
jakevdp
799
220k
Transcript
会社の公開ページとKnowledge Base for Amazon BerdrockでRAG作ってみた JAWS-UG沖縄 ⽣成AI特集︕2024年2⽉ 2024.2.17 苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - 新卒3年⽬ - 最近MLを勉強し出した - Skill - AWS/React(Native)/Ruby on Rails 2
アジェンダ 3 l 背景 l Knowledge Base for Amazon Bedrockとは
l 会社の公開ページとBedrockでRAG作ってみた l まとめ
01 背景
新しい情報やプライベートの情報に関する 内容について回答してくれる、ChatGPTの ようなアプリを個人開発で作りたい!
でもいいネタが思いつかん!!
参考:https://fusic.co.jp/members
ちょうどええデータ あるやん
これ使ってみよか〜
作ったもの
苑田(webにない情報) って誰ですか? Webアプリ
苑田っていうのはな。。。 Webアプリ
02 Knowledge Base for Amazon Bedrockとは
Knowledge Base for Amazon Bedrockとは 14 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 15 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 16 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 17 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
03 会社の公開ページとBedrockで RAG作ってみた
データソース 19 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
構成図 20
構成図 21
None
質問内容 会話履歴を保持するための セッションID
sessionIDを指定しない場合 sessionIDを指定する場合 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 詳細とは何でしょうか? 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 彼はAWSだけではなく、Rubyも書ける
ようです。緑のタイツを着ています。 会話情報が保持される
構成図 25
None
構成図 27 毎日データをベクトル化してPineconeに保存している
データを前処理する 28 名前:苑田朝彰 コメント:ほげほげ 略歴:ほげほげ 担当・スキル:ほげほげ プライベート:ほげほげ 必要なところだけ取ったtxtファイル データの抽出
構成図 29 ベクターDB Freeプラン使用
デモ
04 まとめ
まとめ Bedrockを使ってChatGPTのようなアプリを簡単に作ることができた Point 2 sessionIDを使⽤することで、会話履歴が保持された 32 Point 1 Point 3
データの精度を上げるには前処理が重要(かもしれない)
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/
Appendix
検索拡張⽣成(RAG)とは 35 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 36 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 37 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 38 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 39 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 40 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 41 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな