Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
会社の公開ページとKnowledge Base for Amazon Bedrockを使っ...
Search
そのだ
February 19, 2024
Technology
0
310
会社の公開ページとKnowledge Base for Amazon Bedrockを使ってRAG作ってみた
【Doorkeeper】
JAWS-UG沖縄 生成AI特集! 2024年02月
https://jaws-ug-okinawa.doorkeeper.jp/events/167464
そのだ
February 19, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
230
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
25
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
380
AWSでRAGを作る方法
sonoda_mj
1
360
緑一色アーキテクチャ
sonoda_mj
1
200
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
700
検索拡張生成(RAG)をAWSで作る方法
sonoda_mj
1
430
BedrockのToo Many Request解決してみた
sonoda_mj
2
2.6k
AmazonBedrockを使用した自作RAGの作り方
sonoda_mj
1
1k
Other Decks in Technology
See All in Technology
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
440
UI State設計とテスト方針
rmakiyama
2
510
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
110
Postman と API セキュリティ / Postman and API Security
yokawasa
0
200
新機能VPCリソースエンドポイント機能検証から得られた考察
duelist2020jp
0
220
生成AIをより賢く エンジニアのための RAG入門 - Oracle AI Jam Session #20
kutsushitaneko
4
220
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
380
Oracle Cloudの生成AIサービスって実際どこまで使えるの? エンジニア目線で試してみた
minorun365
PRO
4
280
Wvlet: A New Flow-Style Query Language For Functional Data Modeling and Interactive Data Analysis - Trino Summit 2024
xerial
1
110
LINEヤフーのフロントエンド組織・体制の紹介【24年12月】
lycorp_recruit_jp
0
530
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
150
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
330
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Building Adaptive Systems
keathley
38
2.3k
How STYLIGHT went responsive
nonsquared
95
5.2k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Faster Mobile Websites
deanohume
305
30k
Side Projects
sachag
452
42k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Transcript
会社の公開ページとKnowledge Base for Amazon BerdrockでRAG作ってみた JAWS-UG沖縄 ⽣成AI特集︕2024年2⽉ 2024.2.17 苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - 新卒3年⽬ - 最近MLを勉強し出した - Skill - AWS/React(Native)/Ruby on Rails 2
アジェンダ 3 l 背景 l Knowledge Base for Amazon Bedrockとは
l 会社の公開ページとBedrockでRAG作ってみた l まとめ
01 背景
新しい情報やプライベートの情報に関する 内容について回答してくれる、ChatGPTの ようなアプリを個人開発で作りたい!
でもいいネタが思いつかん!!
参考:https://fusic.co.jp/members
ちょうどええデータ あるやん
これ使ってみよか〜
作ったもの
苑田(webにない情報) って誰ですか? Webアプリ
苑田っていうのはな。。。 Webアプリ
02 Knowledge Base for Amazon Bedrockとは
Knowledge Base for Amazon Bedrockとは 14 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 15 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 16 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 17 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
03 会社の公開ページとBedrockで RAG作ってみた
データソース 19 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
構成図 20
構成図 21
None
質問内容 会話履歴を保持するための セッションID
sessionIDを指定しない場合 sessionIDを指定する場合 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 詳細とは何でしょうか? 苑田とは誰ですか? AWSエンジニアです 詳細を教えてください 彼はAWSだけではなく、Rubyも書ける
ようです。緑のタイツを着ています。 会話情報が保持される
構成図 25
None
構成図 27 毎日データをベクトル化してPineconeに保存している
データを前処理する 28 名前:苑田朝彰 コメント:ほげほげ 略歴:ほげほげ 担当・スキル:ほげほげ プライベート:ほげほげ 必要なところだけ取ったtxtファイル データの抽出
構成図 29 ベクターDB Freeプラン使用
デモ
04 まとめ
まとめ Bedrockを使ってChatGPTのようなアプリを簡単に作ることができた Point 2 sessionIDを使⽤することで、会話履歴が保持された 32 Point 1 Point 3
データの精度を上げるには前処理が重要(かもしれない)
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/
Appendix
検索拡張⽣成(RAG)とは 35 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 36 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 37 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 38 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 39 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 40 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 41 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな