Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collaborative Topic Modeling for Recommending S...
Search
Shinichi Takayanagi
May 30, 2016
Research
0
1.5k
Collaborative Topic Modeling for Recommending Scientific Articles
論文"Collaborative Topic Modeling for Recommending Scientific Articles"を読んだ際に使用したスライド
Shinichi Takayanagi
May 30, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
バイブコーディングの正体——AIエージェントはソフトウェア開発を変えるか?
stakaya
5
970
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
530
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
610
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.2k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
340
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.4k
Other Decks in Research
See All in Research
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
150
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
NLP2025参加報告会 LT資料
hargon24
1
350
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
160
Ad-DS Paper Circle #1
ykaneko1992
0
5.9k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
120
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3k
A multimodal data fusion model for accurate and interpretable urban land use mapping with uncertainty analysis
satai
3
260
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
18k
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
330
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
140
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
Featured
See All Featured
Facilitating Awesome Meetings
lara
55
6.5k
Building Adaptive Systems
keathley
43
2.7k
The Language of Interfaces
destraynor
160
25k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Visualization
eitanlees
146
16k
Transcript
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang,
David M. Blei 高柳慎一
(C)Recruit Communications Co., Ltd. ABSTRACT 1
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks
5
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
(C)Recruit Communications Co., Ltd. LDAの特徴 14
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
(C)Recruit Communications Co., Ltd. 予測 24
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
(C)Recruit Communications Co., Ltd. データの規模感 26
(C)Recruit Communications Co., Ltd. 評価 27
(C)Recruit Communications Co., Ltd. 結果 28
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29
数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34