Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Collaborative Topic Modeling for Recommending S...
Search
Shinichi Takayanagi
May 30, 2016
Research
0
1.5k
Collaborative Topic Modeling for Recommending Scientific Articles
論文"Collaborative Topic Modeling for Recommending Scientific Articles"を読んだ際に使用したスライド
Shinichi Takayanagi
May 30, 2016
Tweet
Share
More Decks by Shinichi Takayanagi
See All by Shinichi Takayanagi
[NeurIPS 2023 論文読み会] Wasserstein Quantum Monte Carlo
stakaya
0
520
[KDD2021 論文読み会] ControlBurn: Feature Selection by Sparse Forests
stakaya
2
1.9k
[ICML2021 論文読み会] Mandoline: Model Evaluation under Distribution Shift
stakaya
0
2k
[情報検索/推薦 各社合同 論文読み祭 #1] KDD ‘20 "Embedding-based Retrieval in Facebook Search"
stakaya
2
610
【2020年新人研修資料】ナウでヤングなPython開発入門
stakaya
29
21k
論文読んだ「Simple and Deterministic Matrix Sketching」
stakaya
1
1.1k
Quick Introduction to Approximate Bayesian Computation (ABC) with R"
stakaya
3
340
The Road to Machine Learning Engineer from Data Scientist
stakaya
5
4.3k
論文読んだ「Winner’s Curse: Bias Estimation for Total Effects of Features in Online Controlled Experiments」
stakaya
1
4.7k
Other Decks in Research
See All in Research
Computational OT #1 - Monge and Kantorovitch
gpeyre
0
190
Cross-Media Information Spaces and Architectures
signer
PRO
0
230
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
350
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
320
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
24
16k
数理最適化と機械学習の融合
mickey_kubo
15
8.9k
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
6
3.3k
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
990
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
210
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
1.1k
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
Looking for Escorts in Sydney?
lunsophia
1
120
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Why Our Code Smells
bkeepers
PRO
337
57k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Faster Mobile Websites
deanohume
308
31k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
830
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
RCO論文輪読会(2016/05/27) “Collaborative topic modeling for recommending scientific articles”(KDD2011) Chong Wang,
David M. Blei 高柳慎一
(C)Recruit Communications Co., Ltd. ABSTRACT 1
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 2
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 3
(C)Recruit Communications Co., Ltd. 1. INTRODUCTION 4
(C)Recruit Communications Co., Ltd. 2. BACKGROUND & 2.1 Recommendation Tasks
5
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 6
(C)Recruit Communications Co., Ltd. 2.1 Recommendation Tasks 7
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 8
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 9
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 10
(C)Recruit Communications Co., Ltd. 2.2 Recommendation by Matrix Factorization 11
(C)Recruit Communications Co., Ltd. 2.3 Probabilistic Topic Models 12
(C)Recruit Communications Co., Ltd. LDAの生成過程 13
(C)Recruit Communications Co., Ltd. LDAの特徴 14
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 15
(C)Recruit Communications Co., Ltd. COLLABORATIVE TOPIC REGRESSION 16
(C)Recruit Communications Co., Ltd. CTRの生成過程 17
(C)Recruit Communications Co., Ltd. 3. COLLABORATIVE TOPIC REGRESSION 18
(C)Recruit Communications Co., Ltd. CTRのモデルのRegressionたる所以 19
(C)Recruit Communications Co., Ltd. 学習のさせ方 20
(C)Recruit Communications Co., Ltd. 学習のさせ方 21
(C)Recruit Communications Co., Ltd. 簡単な証明 by iPad手書き 22
(C)Recruit Communications Co., Ltd. 学習のさせ方 23
(C)Recruit Communications Co., Ltd. 予測 24
(C)Recruit Communications Co., Ltd. 4. EMPIRICAL STUDY 25
(C)Recruit Communications Co., Ltd. データの規模感 26
(C)Recruit Communications Co., Ltd. 評価 27
(C)Recruit Communications Co., Ltd. 結果 28
(C)Recruit Communications Co., Ltd. 結果 (ライブラリ内の論文数(Fig 5)・ある論文をLikeした数(Fig 6) 依存性) 29
数が増えると Recallが下がる (あまり有名な論文じゃ ないのを出すため) 数が増えると Recallが上がる (みんな見てる論文 だとCFがうまく動く)
(C)Recruit Communications Co., Ltd. 結果(ある2ユーザの好んだトピックを抽出) 30 トピックの潜 在ベクトルの 重みをランキ ングして抽出
(C)Recruit Communications Co., Ltd. 結果(オフセットの大きかった論文BEST 10) 31 ※内容よりもCFが効くケースに相当
(C)Recruit Communications Co., Ltd. 結果(EMの論文がベイズ統計勢にもよく参照されている例) 32 ※内容よりもCFが効く ケースに相当
(C)Recruit Communications Co., Ltd. 結果(逆にトピックが広がらない例) 33 ※内容が支配的なケー スに相当
(C)Recruit Communications Co., Ltd. 5. CONCLUSIONS AND FUTURE WORK 34