Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Update 2 On Ephemeris Uncertainty Modeling

Update 2 On Ephemeris Uncertainty Modeling

Further updates on new advances to construct a Bayesian solar-system ephemeris model.

Dr. Stephen R. Taylor

August 29, 2017
Tweet

More Decks by Dr. Stephen R. Taylor

Other Decks in Science

Transcript

  1. UPDATE ON EPHEMERIS UNCERTAINTY MODELING Stephen Taylor & Michele Vallisneri

    JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY © 2017 California Institute of Technology. Government sponsorship acknowledged 1 Telecon 2 (08/29/2017)
  2. 2 1 2 3 4 remove tempo2 geocenter to barycenter

    correction construct new roemer (geo. to bary.) from physical model add to residuals Physical Ephemeris Uncertainty Model still use tempo2 geocenter to observatory correction 5 search over physical ephemeris parameters along with pulsar noise & GWB
  3. 3 Physical Ephemeris Uncertainty Model def ssephem_physical_model(x, mjd, earth, jupiter,

    uranus, neptune, equatorial=True): # it's a twelve parameter model (with argument x, see below for priors). # Feed it the TOA vector (size n) and Earth-to-SSB, Jupiter-to-SSB, etc. # (n,3) arrays. Set equatorial=True or False depending on the tempo2 # coordinate frame, which matches the par-file coordinates. # frame rotation (three angles, a rate, and an absolute offset) earth = ss_framerotate(mjd, earth, x[0], x[1], x[2], x[3], offset=x[4:7], equatorial=equatorial) # uranus mass perturbation earth = dmass(earth,uranus,x[7]) # neptune mass perturbation earth = dmass(earth,neptune,x[8]) # rotate jupiter earth = dorbit(mjd, earth, jupiter, x[9], x[10], x[11], 0.0, 0.0009547918983127075) return earth frame rotation Uranus mass Neptune mass Jupiter orbit MARK I model
  4. 4 Physical Ephemeris Uncertainty Model …where we left off last

    telecon MARK I model — 36 pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436 — dashed = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model …once we widened Uranus/Neptune mass priors, then added Jupiter/Saturn mass perturbations, DE430 connected with the other ephemerides Sim, Agwb = 0 —But required mass perturbations were HUGE (way beyond IAU uncertainties) Real 11yr data MARK I model However, we still could not connect the ephemeris results in the true dataset…
  5. 5 Physical Ephemeris Uncertainty Model def ssephem_physical_model(x, mjd, earth, jupiter,

    uranus, neptune, equatorial=True): # frame rotation (only ecliptic-z drift rate can be constrained) earth = ss_framerotate(mjd, earth, x[0], offset=None, equatorial=equatorial) # jupiter mass perturbation earth = dmass(earth,uranus,x[1]) # saturn mass perturbation earth = dmass(earth,neptune,x[2]) # uranus mass perturbation earth = dmass(earth,uranus,x[3]) # neptune mass perturbation earth = dmass(earth,neptune,x[4]) # perturb jupiter’s orbital elements jup_perturb_tmp = 0.0009547918983127075 * np.einsum(‘i,ijk->jk', x[5:11], jup_orbelxyz) earth += np.array([np.interp(mjd, jup_mjd, jup_perturb_tmp[:,aa]) for aa in range(3)]).T return earth frame drift Uranus mass Neptune mass Jupiter orbit MARK II model Jupiter mass Saturn mass
  6. 6 Physical Ephemeris Uncertainty Model Model is 11-D 1 frame

    drift-rate about ecliptic “z” 1 Uranus mass perturbation (constrained by IAU prior) 1 Neptune mass perturbation (constrained by IAU prior) 6 Jupiter orbital element perturbations 1 Saturn mass perturbation (constrained by IAU prior) 1 Jupiter mass perturbation (constrained by IAU prior) (1) semi-major axis (2) eccentricity (3) inclination (4) longitude of the ascending node (5) longitude of perihelion (6) mean longitude
  7. 7 Physical Ephemeris Uncertainty Model weak GWB injection — 36

    pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436 — dashed = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model
  8. 8 Physical Ephemeris Uncertainty Model weak GWB injection — 36

    pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436 — dashed = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model
  9. 9 Physical Ephemeris Uncertainty Model moderate GWB injection — 36

    pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436 — dashed = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model
  10. 10 Physical Ephemeris Uncertainty Model strong GWB injection — dashed

    = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model — 36 pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436
  11. 11 Physical Ephemeris Uncertainty Model — dashed = no ephemeris

    uncertainty modeling — solid = physical ephemeris uncertainty model — 36 pulsars — 11 years — equally sampled w/ 500 ns precision — dataset created under DE436 no GWB injection — DE418 and DE430 give significant signals here without ephemeris modeling — Mark I and Mark II models take care of that — But Mark II can do this with IAU mass priors
  12. 12 Physical Ephemeris Uncertainty Model preliminary NANOGrav 11yr dataset analysis

    (only ~20k samples) PRELIMINARY — dashed = no ephemeris uncertainty modeling — solid = physical ephemeris uncertainty model
  13. 13 Physical Ephemeris Uncertainty Model Next steps are to: —re-run

    analyses with spatial correlations switched on —quantify absorption of GWB signal by physical model