Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IP66_EvacuationLearning
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
SatokiMasuda
November 18, 2024
Research
0
54
IP66_EvacuationLearning
第66回土木計画学研究発表会・秋大会の発表資料です。「異質性に着目した強化学習に基づく動的避難目的地選択モデル」
SatokiMasuda
November 18, 2024
Tweet
Share
More Decks by SatokiMasuda
See All by SatokiMasuda
hksts2025
stkmsd
1
21
ieee2025
stkmsd
0
19
ip71_contraflow_reconfiguration
stkmsd
0
130
kanazawa2024
stkmsd
0
54
hksts2024
stkmsd
0
57
IP70_counterfactual_machine_learning
stkmsd
0
61
ip68_LocationGame
stkmsd
0
42
ip67_MFDRL_evacuation
stkmsd
0
65
CPIJ2024_DisasterLocationGame
stkmsd
0
75
Other Decks in Research
See All in Research
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.5k
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
190
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
120
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
650
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
880
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
620
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
12k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
130
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
320
[SF Ruby Conf 2025] Rails X
palkan
0
740
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.2k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
240
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
ҟ࣭ੑʹணͨ͠ڧԽֶशʹجͮ͘ ಈతආతબϞσϧ ˓ ૿ా ܛथ ౦ژେֶֶܥݚڀՊ ະདྷ גࣜձࣾ๛ాதԝݚڀॴ Ӌ౻
ӳೋ ౦ژେֶֶܥݚڀՊ 12 ަ௨ωοτϫʔΫੳηογϣϯ 2022.11.12 16:45-18:15 ୈ9ձ ୈճܭըֶݚڀൃදձɾळେձ!ླྀٿେֶ
ආͷωοτϫʔΫσβΠϯɾ੍ޚ 2 ࡂ࣌ʹಥൃతͳधཁ͕ൃੜ͠ɺωοτϫʔΫ༰ྔΛա ةݥେ ةݥத ةݥখ
ආͷωοτϫʔΫσβΠϯɾ੍ޚ Øࡂ࣌ͷใఏڙσβΠϯ Øࡂؒͷආ܇࿅ͷ࠷దઃܭ 3 બͷҟ࣭ੑΛ׆༻ͨ͠ආަ௨ͷΈ߹Θͤ࠷ద ةݥେ ةݥத ةݥখ ใͷֶशաఔͱߦಈม༰ΛϞσϧԽ͠ɺ੍ޚʹ׆༻͢Δ
ֶशաఔͷදݱ – ڧԽֶश ΤʔδΣϯτ͕ڧԽֶशΛߦ͏ͱ͢Δͱɺ ߦಈͱใुͷ֫ಘΛ܁Γฦ͠ɺ࠷దͳํࡦΛֶश͍ͯ͘͠ → ʮඇආʯঢ়ଶʹ͋Δ࣌ɺظใु͕࠷ߴ͍ঢ়ଶભҠΛֶश 4 ࣌ؒ ֶशᶃ
ආޮ༻ 𝑣 ආ ᶄ Ұํɺਓؒڥ͔Β࠷దํࡦΛֶͳ͍͜ͱɺֶशΛ٫ ͢Δ͜ͱ͕͋Δɻ
ֶशաఔͷදݱ – day-to-dayͷܦ࿏બ ܦ࿏બߦಈʹؔ͢Δ࣮ݧ࣮ࣨݧͷݚڀ͕ߦΘΕ͖ͯͨ • ܁Γฦ͠ʹΑΔश׳Խ Bogers, Bierlaire, Hoogendoorn (2007)
• ϕΠζϧʔϧʹΑΔೝͷߋ৽ Jha, Madanat, Peeta (1998) • Horowitz (1984) – ֶशʹΑΔཱྀ֮ߦ࣌ؒͷܗΛදݱ 5 𝑢!" = 𝛽#!$% $ & "'( 𝑤& 𝑇!& + 𝜖!" աڈͷཱྀߦ࣌ؒͷॏΈ͖ฏۉ 𝑤& ͷઃఆʹΑΓ͞·͟·ͳදݱ͕Մೳɻ ex) ͍ۙաڈͷܦݧ΄ͲॏΈ͚ ü ॏΈ 𝑤& ੳऀ͕ઃఆ͢Δ ü ࡂ܇࿅ຖ܁Γฦ͞ΕΔֶशͰͳ͍ ຊݚڀͰ𝑤! Λ٫ͱଊ͑ɺೝֶशաఔΛද͢ॏཁͳ ύϥϝʔλͱͯ͠ਪఆ͢Δ
ຊݚڀͷয త ใͷֶशͱ٫Λߟྀͨ͠ආωοτϫʔΫ੍ޚ nڧԽֶशɾday-to-dayͷܦ࿏બͷֶश • աڈͷܦݧ֎෦ใʹΑΔ֮ߦಈنൣܗ Øֶशִ͕͍ؒ߹ͷɺֶशͱ٫ͷهड़ͱ༧ଌ͕ඞཁ n ආߦಈͷੳ •
܇࿅ใఏڙલޙͷҙมԽͷੳ ØޮՌͷ࣋ଓͷੳ͕ෆՄܽ ࡂكগࣄΏֶ͑शͱ٫ΛϞσϦϯά͠ɺ࣮ݧσʔλʹΑΔ ύϥϝʔλਪఆͰֶशաఔͷಛΛ໌Β͔ʹ͢Δɻ 6
ֶशաఔͷදݱ 7 ࣌ؒ ֶशᶃ 𝑣) ࣌ؒͱͱʹޮՌݮ ٫ ආޮ༻ 𝑣
ආ
ֶशաఔͷදݱ 8 ࣌ؒ ੳ࣌ 𝑣) ࣌ؒͱͱʹޮՌݮ ٫ ආޮ༻ 𝑣 ආ
ֶशᶃ
ֶशաఔͷදݱ 9 ආޮ༻ 𝑣 ආ ࣌ؒ ੳ࣌ 𝑣) 𝜆 𝑣避難
= 𝑣" +𝜆𝛿学習 ֶशޮՌൈ͖ͷ ޮ༻ͷ֬ఆ߲ ֶशܦݧ͕͋Ε ͳ͚Εͷม ֶशᶃ
ֶशաఔͷදݱ 10 ࣌ؒ ੳ࣌ 𝑣) 𝜆 ਅͷޮՌ 𝑣避難 = 𝑣"
+𝜆𝛿学習 ֶशޮՌൈ͖ͷ ޮ༻ͷ֬ఆ߲ ֶशܦݧ͕͋Ε ͳ͚Εͷม ආޮ༻ 𝑣 ආ ܦݧΛ୯७ʹઆ໌มʹؚΊΔ͚ͩͰ ֶशͷޮՌΛաখධՁͯ͠͠·͏ ֶशᶃ
ֶशաఔͷදݱ – ఏҊ 11 ࣌ؒ ֶशᶃ ̅ 𝜆 ආޮ༻ 𝑣
ආ ੳ࣌ ୯Ґ࣌ؒ 𝑣)
ֶशաఔͷදݱ – ఏҊ 12 ࣌ؒ 𝑣) ̅ 𝜆 ආޮ༻ 𝑣
ආ ੳ࣌ 𝛾 ̅ 𝜆 𝛾* ̅ 𝜆 𝛾+ ̅ 𝜆 ੳ࣌Ͱͷ ֶशᶃͷޮՌ 𝑣避難 = 𝑣" +𝛾# ̅ 𝜆𝛿学習① ֶशᶃ͕͋Ε ͳ͚Εͷม ٫ͷఔΛද͢ม𝛾Λಋೖ ֶशᶃ ୯Ґ࣌ؒ
ֶशաఔͷදݱ ʻԾఆʼ • ԿֶशΛ܁Γฦͯ͠ɺͦͷޮՌ ̅ 𝜆Ͱݻఆ • ֶशͷִؒ΄΅ҰఆͰɺwaveؒͰ٫ 𝛾ͰޮՌ͕ݮ͢Δ 13
𝑣避難 = 𝑣" +𝛾!$% ̅ 𝜆𝛿&'() % + 𝛾!$* ̅ 𝜆𝛿&'() * + 𝛾!$# ̅ 𝜆𝛿&'() # + ⋯ = 𝑣" + ̅ 𝜆 * +,% ! 𝛾!$+𝛿+ • ਪఆରɺ ̅ 𝜆ʢֶशʹΑΔޮՌʣͱ 𝛾ʢ٫ʣ શ 𝑥 wave͋Δͱ͖ɺwave 𝑥ޙͷޮ༻ͷ֬ఆ߲ɺ
ֶशσʔλͷऔಘ • ෳwaveͷߦಈσʔλ͕͋Ε٫܇࿅ޮՌͷਪఆ͕Մೳ 14 ࠞࡶใ ආ܇࿅ ආ܇࿅ ආ܇࿅ ࠞࡶใ ਁਫใ
ආ܇࿅ ࠞࡶใ ਁਫใ ආߦಈ SPௐࠪᶃ 2022/3/2 ~ 4 ආߦಈ SPௐࠪᶄ 2022/3/11 ~ 15 ආߦಈ SPௐࠪᶅ 2022/3/25 ~ 29 ආߦಈ SPௐࠪᶆ 2022/4/14 ~ 20 ࠞࡶใ ਁਫใ 272໊
܇࿅ͱใఏڙͷ༷ࢠ 15 1 2 3 ᶃେౡஸஂ ϋβʔυใ ྟւ෦ͷ΄͏͕ਫ ʹରͯ҆͠શͱ͍͏ ͷײͱҧ͏ɻ
ॳΊͯͬͨɻ ਁਫҬʹॅΉߴྸঁੑ
ආతબϞσϧ – 2ͭͷಈֶੑ 16 ࣗ ආॴ A ආॴ B wave1
wave2 ࡂ࣌ ಈతࢄબϞσϧ ආܦݧ ࡂؒ ޮ༻ͷߋ৽ 𝑝 𝑠!"# 𝑠! = 𝑒 # $ % 𝑠!"# 𝑠! ; 𝜽 "&'! ("#$ ∑ ("#$ % ∈* (" 𝑒 # $ % 𝑠!"# + 𝑠! ; 𝜽 "&'! ("#$ % 𝑣!"# = 𝑣$ + 𝜆 % %,&' % 𝛾%(%, 𝛿% wave間 wave
waveؒ ֶशύϥϝʔλͷਪఆ 17 wave1避難者 wave1非避難者 推定値 t値 推定値 t値 非避難効用の変化
(出発時刻選択) 48h前固有項 0.362 2.08* 0.224 0.73 24h前固有項 0.344 1.85 0.862 2.25* 12h前固有項 -0.303 -1.28 -1.541 -1.89 6h前固有項 -1.236 -3.39** 2.173 2.08* 目的地効用の変化 ハザードマップ内 -0.683 -1.40 -1.128 -1.59 避難訓練参加 (自宅選択時) -0.580 -1.05 0.004 0.01 目的地の混雑情報 (非自宅選択時) -0.433 -1.38 -2.017 -2.86** 記憶率 0.143 0.48 0.321 1.20 サンプル数 100 144 初期対数尤度 -723.9 -290.0 最終対数尤度 -682.2 -197.8 尤度比 0.058 0.318 修正済尤度比 0.047 0.290 *:5%有意, **1%有意 • wave1Ͱආ͢Δͱճͨ͠ਓͱͦ͏Ͱͳ͍ਓʹ͚ͯਪఆ ආͷબ͕ݩ͔ Β͍ਓɺ܇࿅ ࢀՃͷޮՌ͕ೝΊ ΒΕͳ͍͕ɺࠞࡶ Λආ͚Α͏ͱ͢Δ ̅ 𝜆 𝛾 忘却率
waveؒ ֶशύϥϝʔλͷਪఆ 18 EMクラス1 EMクラス2 推定値 t値 推定値 t値 非避難効用の変化
(出発時刻選択) 48h前固有項 11.871 0.10 -0.053 -0.30 24h前固有項 0.369 2.14* 0.237 1.11 12h前固有項 -8.180 -0.15 0.143 0.63 6h前固有項 8.740 0.15 -2.449 -5.46** 目的地効用の変化 ハザードマップ内 -2.144 -2.28* 0.847 1.41 避難訓練参加 (自宅選択時) -1.902 -2.20* -0.629 -0.74 目的地の混雑情報 (非自宅選択時) -3.598 -3.09** 0.028 0.08 記憶率 1 4.15** 0.213 1.17 サンプル数 100 初期対数尤度 -723.9 最終対数尤度 -571.7 尤度比 0.210 修正済尤度比 0.188 *:5%有意, **1%有意 Ϋϥε1 = • ਁਫ͢Δॴʹߦ͖ͨ ͘ͳ͍ • ܇࿅ࢀՃʹΑΓආ ޮ༻্͕ঢ͢Δ • ࠞࡶ͢Δॴʹߦ͖ͨ ͘ͳ͍ ͱֶश͢Δൣ Ϋϥε2 = ใఏڙʹײ͕ͳ͍ • wave1Ͱආ͢Δͱճͨ͠ਓͷதʹҟ࣭ੑ͕͋Δͱߟ͑ɺજ ࡏΫϥεϞσϧͰਪఆ ̅ 𝜆 𝛾 忘却率
ආ܇࿅ࢀՃʹΑΔආޮ༻ͷมԽ 19 ࣌ؒ ආ܇࿅ᶃ ආ܇࿅ᶄ 𝑣) ආޮ༻ 𝑣 ආ 2िؒ
−3.60 -0.63 Ϋϥε1 Ϋϥε2
ࠞࡶใఏڙʹΑΔతޮ༻ͷมԽ 20 ࣌ؒ ใఏڙᶃ ใఏڙᶄ ආޮ༻ 𝑣 ආ 2िؒ −1.90
0.03 Ϋϥε1 Ϋϥε2
·ͱΊ üكগࣄʹର͢Δֶशͱ٫ͷաఔΛϞσϧԽ ü࣮ݧσʔλʹΑΔύϥϝʔλਪఆͰ܇࿅ͱใͷֶशաఔΛੳ üใఏڙܦݧʹର͢Δֶशͷఔͱɺ٫ͷ͞ʹҟ࣭ੑ͕ ͋Δ͜ͱΛ໌Β͔ʹͨ͠ ࠓޙͷํੑ Øใఏڙʹର͢ΔԠͷҟ࣭ੑΛར༻ͯ͠ɺආަ௨ͷधཁɾܦ ࿏ɾతͷ࠷ద੍ޚൃల Ø٫ͷԾఆͷ؇ →
ܦա࣌ؒͷߏԽɺม͝ͱʹҟͳΔ٫ͷઃఆ 21