Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
High memory usage server in Go
Search
hami
July 13, 2019
Programming
0
2.4k
High memory usage server in Go
Go Conference'19 Summer in Fukuoka の発表資料です
hami
July 13, 2019
Tweet
Share
More Decks by hami
See All by hami
DeNA.go #01 次世代配車アプリ「MOV」 Go事例紹介
subc
4
9.6k
Other Decks in Programming
See All in Programming
関数実行の裏側では何が起きているのか?
minop1205
1
690
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
130
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
310
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
Go コードベースの構成と AI コンテキスト定義
andpad
0
120
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
9
1.1k
React Native New Architecture 移行実践報告
taminif
1
150
AIコーディングエージェント(skywork)
kondai24
0
160
Cell-Based Architecture
larchanjo
0
110
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
660
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
AIコーディングエージェント(Gemini)
kondai24
0
210
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Navigating Team Friction
lara
191
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How STYLIGHT went responsive
nonsquared
100
6k
Designing Experiences People Love
moore
143
24k
Site-Speed That Sticks
csswizardry
13
1k
Balancing Empowerment & Direction
lara
5
800
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
High memory usage server in Go Go Conference ‘19 Summer
in Fukuoka July 13th @haminick
自己紹介 ◦ DeNAサーバサイドエンジニア ◦ 2016年 ~ ゲームプラットフォーム ◦ 2018年 ~
◦ オートモーティブ事業部 ◦ 次世代タクシー配車アプリMOV
本日の資料 twitter #gocon #fukuokago で URL共有中
本日のお題 ◦ 弊社サービス紹介 ◦ 導入: 緯度経度から住所を引くアルゴリズムの話 ◦ 直面 & 想定しうる課題
◦ マスターデータのメモリ読み込みを高速化するには ◦ データがメモリに乗り切らない場合の対策 ◦ 無停止でマスターデータを高速に切り替えるには
弊社のサービス紹介 MOV
地図を利用したサービスでは住所表示が ユーザの利便性向上に寄与することがある
どうすれば緯度経度から住所が引けるのだろう
現在地が九州か本州か判定する例
現在地にピンを指す ピンが九州か本州か調べたい
格子状に区切る
現在地がどの格子に所属するかハッシュ関数で計算
格子に紐づく本州・九州の多角形データと 衝突判定を行いどちらと衝突したかで決定
現在地が九州と判明 なぜ格子で切り出したか -> 多角形データを小さくして高速化する ため
多角形データが九州や本州といった属性と紐付き 衝突判定ができれば緯度経度から住所判定可
実際のデータでやってみる
とある地域の住所に紐づく多角形データをプロットした図
高速に応答を返すため全てメモリにキャッシュ予定だったが メモリに乗り切るのだろうか
High memory usage server in Go
構成
課題 #1 データのメモリ読み込みに時間が 掛かる
データのメモリ読み込みに時間が掛かる対策 起動時の読み込みを諦め、必要になった場合だけ取得 メリット - サーバ起動時間が高速化 デメリット - サーバdeploy・再起動直後に処理が遅延しサーバが停止する可能性
データのメモリ読み込みに時間が掛かる対策 ファイルをアーカイブ - ファイル単位からアーカイブ単位読み込みに変更してオーバーヘッド減り 高速化
データのメモリ読み込みに時間が掛かる対策 ファイルフォーマットをJSONからProtocol Buffersに変更 - 4745 ns/op から 914 ns/op に高速化
benchmark JSON deserialize sample The Go Playground: https://play.golang.org/p/Y1NwD8KWjhF (Playgroundでは動かないソース共有のみ )
課題 #2 データがメモリに乗り切らない規模 になる可能性がある
データがメモリに乗り切らない場合の対策 巨大な1ファイル - streamで処理 複数ファイル - 事前にメモリを確保しLRUアルゴリズムで古いデータから消す
LRUアルゴリズムとは Least Recently Used (LRU) はキャッシュメモリや仮想メモリが扱うデータのリソース への割り当てを決定するアルゴリズムである。対義語はMost Recently Used (MRU)。
和訳すると「最近最も使われなかったもの」つまり「使われてから最も長い時間が経った もの」「参照される頻度が最も低いもの」である。 source: https://ja.wikipedia.org/wiki/Least_Recently_Used
メモリ確保し古いデータをメモリから消すサンプル The Go Playground: https://play.golang.org/p/7J4qWw7fzdr
メモリ確保し古いデータをメモリから消すサンプル -
書き込み時にLockを取る場合は読み込み処理がブロックされ全体実行速度が 落ちる。分散してキャッシュを持つと影響が最小限になる。 sharding して並列実行性能を高める The Go Playground: https://play.golang.org/p/otst7gRww35
メリット - メモリ使用量を制御できる - Garbage Collectionなしでメモリを使いまわせる デメリット - value ごとのsizeバラつきが大きいとメモリ効率悪化
- LRUの実装コスト重い - 既存ライブラリで解決 -> https://github.com/coocood/freecache
課題 #3 サーバ起動中に高速に 新しいデータへ切り替えたい
データ切り替え 高速に切り替える工夫1 - キャッシュA, Bを用意しA利用中に、Bを準備し準備完了したら切り替える ことで、準備時間が長くても影響ないよう工夫した。
データ切り替え 高速に切り替える工夫2 - sync.RWMutex で RLock同士は排他しない仕組みを利用して、逐次処理 を最低限にして高速化する。 RLock() を利用したデータアクセス例
ref: https://qiita.com/y_matsuwitter/items/36565a3a53ac52732cae
Goを採用してここが良かった Lock, Protocol Buffers, Cache といった部品が揃っている 並列処理をシュっと書ける サーバのCPU / メモリを使いきれる
DeNA Go 2019年7月18日にWeb配信予定
twitter: @haminick GitHub: https://github.com/subc