Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Shipping Apps Confidently with Firebase
Search
Subhrajyoti Sen
November 06, 2021
Programming
0
78
Shipping Apps Confidently with Firebase
Subhrajyoti Sen
November 06, 2021
Tweet
Share
More Decks by Subhrajyoti Sen
See All by Subhrajyoti Sen
Updated Lessons from a KMP Developer's Toolkit
subhrajyotisen
0
29
Building Mobile Apps and Scaling them
subhrajyotisen
0
33
Compose Previews as a Power User
subhrajyotisen
1
170
Understanding WindowInsets
subhrajyotisen
0
200
Exploring a KMM Developer’s Toolkit
subhrajyotisen
1
220
Understanding WindowInsets - Android Worldwide
subhrajyotisen
0
330
Understanding WindowInsets
subhrajyotisen
1
200
Demystifying Styles and Themes
subhrajyotisen
0
240
Journey Of Time
subhrajyotisen
0
250
Other Decks in Programming
See All in Programming
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3k
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
160
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
4
1.2k
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.3k
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
170
Java 25, Nuevas características
czelabueno
0
110
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
440
開発に寄りそう自動テストの実現
goyoki
2
1.4k
Implementation Patterns
denyspoltorak
0
120
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
970
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
200
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Marketing to machines
jonoalderson
1
4.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Practical Orchestrator
shlominoach
190
11k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
A Tale of Four Properties
chriscoyier
162
23k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
[SF Ruby Conf 2025] Rails X
palkan
0
600
How to build a perfect <img>
jonoalderson
0
4.7k
Building AI with AI
inesmontani
PRO
1
570
Bash Introduction
62gerente
615
210k
Transcript
Shipping Apps Con dently with Firebase KeepTruckin Subhrajyoti Sen DevFest
Greece & Cyprus 2021 November 2021
Crashes
Crashlytics
Crashlytics • Automatic crash reporting
Crashlytics • • Automatic crash reporting But no limited to
crash reporting
Recording Non-fatal exceptions
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Log.d(TAG, e.localizedMessage) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Log.d(TAG, e.localizedMessage) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { FirebaseCrashlytics.getInstance().recordException(e) }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { override
fun log(priority: Int, tag: String?, message: String, t: Throwable?) { } }
Recording Non-fatal exceptions private class CrashReportingTree : Timber.Tree() { override
fun log(priority: Int, tag: String?, message: String, t: Throwable?) { if (priority == Log.ERROR && t != null) { FirebaseCrashlytics.getInstance().recordException(t) } } }
Recording Non-fatal exceptions class MainApplication : Application() { override fun
onCreate() { super.onCreate() Timber.plant(CrashReportingTree()) } }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { FirebaseCrashlytics.getInstance().recordException(e) }
Recording Non-fatal exceptions try { // some code can throw
an exception } catch (e: Exception) { Timber.e(e) }
Understanding Crashes Better
Analytics
Analytics • We normally use analytics in isolation from crash
reporting
Analytics • • We normally use analytics in isolation from
crash reporting Usually PMs check the analytics and Devs check the crashes
Analytics • • • We normally use analytics in isolation
from crash reporting Usually PMs check the analytics and Devs check the crashes What if you can combine them to get a full view?
Analytics
Analytics
Analytics binding.zoomImage.setOnClickListener { MixpanelAPI.track("Zoom button clicked") }
Analytics binding.zoomImage.setOnClickListener { MixpanelAPI.track("Zoom button clicked") FirebaseAnalytics.getInstance(context) .logEvent("Zoom button clicked",
mapOf("page", "map")) }
Analytics interface AnalyticsProvider { fun track( analyticEvent: String, properties: Map<String,
Any?>? = null ) }
Analytics class FirebaseAnalyticsProvider( private val rebaseAnalytics: FirebaseAnalytics ): AnalyticsProvider {
override fun track(analyticEvent: String, properties: Map<String, Any?>?) { rebaseAnalytics.logEvent(analyticEvent, properties) } }
Analytics class FirebaseAnalyticsProvider( private val rebaseAnalytics: FirebaseAnalytics ): AnalyticsProvider {
override fun track(analyticEvent: String, properties: Map<String, Any?>?) { rebaseAnalytics.logEvent(analyticEvent, properties) } }
Analytics class AnalyticsManager { private val analyticsProviders = mutableListOf<AnalyticsProvider>() fun
addProvider(provider: AnalyticsProvider) { analyticsProviders.add(provider) } }
Analytics class AnalyticsManager { //... fun track(analyticEvent: String, properties: Map<String,
Any?>?) { analyticsProviders.forEach { provider -> provider.track(analyticEvent, properties) } } }
Analytics binding.zoomImage.setOnClickListener { analyticsManager.logEvent( "Zoom button clicked", mapOf("page", "map") )
}
Feature Flags
What's a feature ag?
What's a feature ag? if (isNewFeatureEnabled) { // allow access
to shiny new feature } else { // prevent access to shiny new feature }
Use cases
Use cases • A/B Testing
Use cases • • A/B Testing Rolling out new features
Use cases • • • A/B Testing Rolling out new
features Rolling out rewrite of existing features
Use cases • • • • A/B Testing Rolling out
new features Rolling out rewrite of existing features Merge Work-in-progress features
Types of Feature Flags?
Types of Feature Flags? • Static
Types of Feature Flags? • • Static Decided at build
time
Types of Feature Flags? • • • Static Decided at
build time Based on things like versionCode, buildVariant, etc
Types of Feature Flags? • • • • Static Decided
at build time Based on things like versionCode, buildVariant, etc Dynamic
Types of Feature Flags? • • • • • Static
Decided at build time Based on things like versionCode, buildVariant, etc Dynamic Can be controlled at runtime either locally using dev settings
Types of Feature Flags? • • • • • •
Static Decided at build time Based on things like versionCode, buildVariant, etc Dynamic Can be controlled at runtime either locally using dev settings Or remotely via services like Firebase Remote Con g
None
Show me code!!
interface Con g { val key: String val default: Boolean
val description: String }
enum class FeatureFlags( override val key: String, override val default:
Boolean, override val description: String ): Con g
enum class FeatureFlags( override val key: String, override val default:
Boolean, override val description: String ): Con g { NEW_CHECKOUT_FLOW( "checkout_ ow_v2", true, "Enable checkout ow V2 for trending items" ) }
interface FeatureFlagProvider { fun getValue(featureFlag: FeatureFlag): Boolean }
class FirebaseFeatureFlagProvider: FeatureFlagProvider { private val remoteCon g = FirebaseRemoteCon
g.getInstance() override fun getValue(featureFlag: FeatureFlag): Boolean { return remoteCon g.getBoolean(featureFlag.key) } }
class RemoteCon gManager( private val featureFlagProvider: FeatureFlagProvider ) { fun
isFeatureEnabled(featureFlag: FeatureFlag) = featureFlagProvider.getValue(featureFlag) }
if (remoteCon gManager.isFeatureEnabled(NEW_CHECKOUT_FLOW)) { // allow access to shiny new
feature } else { // prevent access to shiny new feature }
Using Feature Flags effectively
Using Feature Flags effectively • De ne success metrics
Using Feature Flags effectively • • De ne success metrics
Less Crashes?
Using Feature Flags effectively • • • De ne success
metrics Less Crashes? Smoother experience?
Using Feature Flags effectively • • • • De ne
success metrics Less Crashes? Smoother experience? Implement using your Analytics library (like Mixpanel)
Using Feature Flags effectively • • • • • De
ne success metrics Less Crashes? Smoother experience? Implement using your Analytics library (like Mixpanel) Create dashboards to compare
@iamsubhrajyoti https://calendly.com/subhrajyotisen
Credits: UC Davis