Upgrade to Pro — share decks privately, control downloads, hide ads and more …

20220112 방송통신위원회/RAPA 지역중소방송 콘텐츠 경쟁력 강화를 위한 지역방송 교육 및 인력양성 지원 사업 @ 제주 JIBS 본사

20220112 방송통신위원회/RAPA 지역중소방송 콘텐츠 경쟁력 강화를 위한 지역방송 교육 및 인력양성 지원 사업 @ 제주 JIBS 본사

2022.01.12.(수) 14:00~16:00

ATSC 3.0 표준 기반 SFN 방송망 관리:
UHD 기술표준 , ATSC 3.0 기술 및 동향 , UHD 부가서비스 설명

Sungho Jeon
PRO

January 12, 2022
Tweet

More Decks by Sungho Jeon

Other Decks in Technology

Transcript

  1. ATSC 3.0 표준 기반 SFN 방송망 관리 UHD 기술표준, ATSC

    3.0 기술 및 동향, UHD 부가서비스 설명 2022.01.12.(수) 14:00~16:00 KBS 미디어송출부 전성호 팀장 방송통신위원회 지역중소방송 콘텐츠 경쟁력 강화를 위한 “지역방송 교육 및 인력양성 지원 사업” @ 제주 JIBS 본사 Korean BroadcastingSystem | Department of MediaTransmission
  2. Part 1 : 지상파 UHD 혁신서비스 개시 2

  3. https://emf.kca.kr/html/elecBusiness/class.do?menuCd=FM0802 전자파의 분류와 주용도 이동통신 지상파 방송 신호가 멀리 가고,

    구석구석 휘어진다. 신호가 멀리 못가고, 직진성이 강하다. 길이가 긴 안테나가 필요하다 안테나 길이가 짧아도 수신이 잘 된다. 10cm 100cm 1cm
  4. DTV 3G/4G 이동통신 5G 이동통신 5G 이동통신 3G/4G 이동통신 UHDTV

    DMB FM
  5. above 6 GHz above 52.6 GHz 3GPP Release 17 https://cdn.everythingrf.com/live/5G%20bands%20snapshot_636543792416696911.PNG

  6. KBS1 UHD Ch.52 (6MHz) SBS UHD Ch.53 (6MHz) 보호대역 (8MHz)

    통합공공 ⇧ (10MHz) 모바일 통신 ⇧ (20MHz) 보호 대역 (5MHz) EBS UHD Ch.54 (6MHz) MBC UHD Ch.55 (6MHz) KBS2 UHD Ch.56 (6MHz) 보 호 대 역 (2MHz) 통합공공 ⇩ (10MHz) 모바일 통신 ⇩ (20MHz) 보 호 대 역 (3MHz) 698 704 710 718 728 748 753 759 765 771773 783 803 806 [MHz] 한국의 700 MHz 대역 주파수 분배도표 Channel 56 ( 768 MHz ) Channel 53 ( 707 MHz ) Channel 52 ( 701 MHz) Channel 54 ( 756 MHz ) Channel 55 ( 762 MHz ) 6 2019년 현재, UHD방송 채널 분배
  7. 1세대 지상파 방송 표준 Recommendation ITU-R BT.1306 (06/2015) Error-correction, data

    framing, modulation and emission methods for digital terrestrial televi sion broadcasting System A(ATSC), System B(DVB-T), System C(ISDB-T), System D(DTMB), System E(DTMB-A) Recommendation ITU-R BT.1368 (02/2015) Planning criteria, including protection ratios, for digital terrestrial television services in the V HF/UHF bands Report BT.2215 (02/2016) Measurements of protection ratios and overload thresholds for broadcast TV receivers 7 2세대 지상파 방송 표준 Recommendation ITU-R BT. BT.1877 (12/2020) Error-correction, data framing, modulation and emission methods for second generation of digital terrestrial television broadcasting systems Annex 2(ATSC3.0) Annex 1(DVB-T2) Annex 3(DTMB-A) Recommendation ITU-R BT.2033 (02/2015) Planning criteria, including protection ratios, for second generation of digital terrestrial television broadcasting systems in the VHF/UHF bands Recommendation ITU-R SM.1541 (08/2015) Unwanted emissions in the out-of-band domain Recommendation ITU-R BT.1206 (04/2016) Spectrum limit masks for digital terrestrial television broadcasting ITU-R 권고(Recommendation) 에 따라서 지상파 방송은 세대를 구분한다.
  8. 차세대 지상파 플랫폼으로서 ATSC 3.0 표준 기반 UHD 방송 (2015.12.)

    ▪ 지상파 UHDTV 방송 환경에서는 ① 수신환경 개선, ② 재난·안전 정보 고지 ③ IP 기반의 양방향.맞춤형 서비스 등 새로운 부가서비스 ④ 이동간 송수신이 기술적으로 구현 가능해질 것으로 전망 • 하나의 송신기만으로 고정형・이동형 방송 동시 서비스 가능 • 실내외 어디서나 수신 가능한 환경 고정형 방송 수신 이동형 방송 수신 UHDTV • IP 기반 양방향・맞춤형 서비스 가능 • 5G-Broadcast 기술과 연동하여 무한한 부가서비스 확장 가능 방송통신 융합형 부가서비스 (IBB) 시청자 맞춤형 부가서비스 (ESG) 무한 확장 부가서비스 • HD(ATSC 1.0) 대비 4배 선명한 화질을 제공할 수 있는 충분한 전송률 제공 • 동일 송신인프라로 다양한 채널 지원 2K FHD 5.1ch 4K UHD 22.2ch 3840 2160 고용량 전송 시스템 시청자 친화적 수신환경 발전된 재난재해경보 방송 서비스 (AEAT)
  9. 차세대 지상파 플랫폼으로서 ATSC 3.0 표준 기반 UHD 방송 (2015.12.)

  10. KBS는 ATSC 3.0 도입에서부터 기술개발, 본방송시스템 구축, 혁신서비스 제안 및

    검증, 필드테스트에 이르는 전과정에 기여하고 있습니다. 2018년 2월 평창동계올림픽 ATSC 3.0 시연
  11. U.S. antenna penetration grows 38% in 2020 미국은 ATSC 3.0

    NextGen TV 도입을 통해 지상파 직접수신을 통한 콘텐츠 도달률이 크게 향상되었음. 차세대 지상파 ‘플랫폼’으로서 ATSC 3.0 방송 미국에서는 2020년 5월부터 현재까지 차근차근 본방송 지역을 넓혀가고 있습니다.
  12. https://pearltv.com/news/nextgen-tv-reaffirms-the-future-of-broadcast-televison-is-here-highlighting-signficant-industry-momentum-at-ces/ https://www.tvtechnology.com/news/ces-2022-hisense-debuts-its-first-nextgen-tvs https://www.businesswire.com/news/home/20201210005152/en/Five-Detroit-Broadcast-Stations-Collaborating-to-Launch-%E2%80%9CMotown-3.0-Test-Track%E2%80%9D-as-NEXTGEN-TV-Broadcasts-Begin-in-Motor-City 중국 Hisense, ATSC 3.0 수신칩셋이 내장된 상용

    수신기 3종을 올여름 중에 출시하기로 발표. . 북미에는 현재 삼성, LG, 소니 상용 수신기 판매중 . 출시예정 모델 및 예정가격 U9H, U8H and U7H : $3,200, $1,100, $800 대만 MediaTek, NextGen TV와 Partnership Test Agreement (with Pearl TV) 을 체결하여 신규 수신기의 개발 및 출시 시간 단축 선언 Motown 3.0 Test Track (in Detroit), 일본 Sony와 함께 자동차 애플리케이션용 ATSC 3.0 플랫폼의 강인한 수신 특성 확인 . 서울지역에서 KBS/ETRI가 공동으로 필드테스트를 실시한 CXD2885 chip을 북미 자동차 산업의 중심인 Detroit에서 검증 . 4개 수신안테나 기반 Maximum Ratio Combining 기법 적용 (참고) 북미 ATSC 3.0 본방송 현황 2022.01. 현재 40개 지역, 인구커버리지 기준 45% 2022. 여름. 인구커버리지 기준 75% 달성 목표
  13. 연차별 주요 업무 계획 (장기) UHD방송은 정부에서 수립한 DTV 전환

    계획에 따라, 연차별 마일스톤이 정해져 있음. 총국/지역국 UHD주조 구축 ATSC 1.0 DTV Switch-Off 2018 2020 2019 2021 2027 2023 DTV 중계소 주파수 재배치 2022
  14. 연차별 주요 업무 계획 (장기) UHD방송은 정부에서 수립한 DTV 전환

    계획에 따라, 연차별 마일스톤이 정해져 있음. 총국/지역국 UHD주조 구축 ATSC 1.0 DTV Switch-Off 2018 2020 2019 2021 2027 2023 700MHz 주파수대역 470–698MHz DTV 주파수대역 단, KBS1, MBC, 지역민방 해당 KBS2, EBS는 전국 단일 주파수 방송망 KBS2, EBS KBS1, MBC, 지역민방 DTV 중계소 주파수 재배치 2022
  15. 전국 UHD주조 연차별 구축 계획: 연주소 + 송신소 견월악 삼매봉

    UHF CH 28 (557MHz)
  16. 지상파 차세대 방송서비스 시연회: 배경

  17. 지상파 차세대 방송서비스 시연회: 성과 및 의의 정부 관계부처 합동

    보도자료 제주특별자치도 보도자료 과기정통부 최기영 장관 “지상파 방송사 뿐만 아니라 방송장비산업의 성장을 위해서도 차세대 지상파 방송의 성장동력 마련을 적극 지원하겠다.” 방통위 한상혁 위원장 “방송의 공공성을 강화하면서도 방송 산업이 성장할 수 있도록 지상파 방송사의 혁신 기반 마련을 적극 지원하겠다.” 제주특별자치도 원희룡 지사 “대한민국 방송기술 발전에 제주가 역할하겠다.” “제주도도 적극적으로 협력해 나가겠다.”
  18. 지상파 차세대 방송서비스 시연회: 공공 프로젝트 구 분 개념도 다채널MMS

    /모바일/IBB 지상파 VoD 서비스 향상된 재난경보 서비스
  19. 지상파 차세대 방송서비스 시연회: 민간 프로젝트 구 분 개념도

  20. 지상파 차세대 방송서비스 시연회: 차량탑승/실외 구 분 개념도 다채널MMS /모바일/IBB

    [이동수신] ATSC3.0-5G 끊김 없는 이동방송 향상된 재난경보 서비스
  21. 뉴스 본문 헤드 라인 UHD 방송 시연… “지상파 혁신 기반

    적극 지원” 차세대 지상파 서비스 시연… 방송 미래 바꾼다 "유료 방송 가입 않고도 지상파서 다양한 채널 본다" 제주서 차세대 지상파 방송 서비스 실증 연구 방송3사 보도내용
  22. 주요 일간지 보도내용 뉴스 본문 헤드 라인 조선일보 ATSC 3.0

    기반 지상파 방송 제주서 시연 SKT,5G·AI기술로미국서초고화질 방송서비스 시작 서울경제 SKT 5G 융합 기술 시연 현장에 지상파 대표들 총출동한 이유는 SKT,4KUHD콘텐츠대중화시킬 기술선보여 지상파UHD방송편성,광고수익원확대방안모색 뉴스1 "차세대 방송 기술이 여기에“ 제주서 'ATSC 3.0' 방송 기술 시연 과기부장관·방통위원장 등실내외기술시연참관 "지상파방송사 혁신기반마련적극지원할것"
  23. UHDTV ATSC3.0 송신기 HEVC 비디오 인코더 ATSC3.0 송신기 IP 다중화기

    콘텐츠보호 부호화기 HEVC 비디오 인코더 GPS PTP • PTP = Precision Time Protocol • GPS = Global Positioning System PTP 4K-UHD 콘텐츠서버 1.3 ~ 52.2 Mbps IP 광케이블 전용망 마이크로웨이브 자영망 시그널링 서버 2K-HD 콘텐츠서버 PTP 콘텐츠보호 부호화기 단일주파수방송망 차량 또는 스마트단말 실내직접수신 7-1 7-2 ✓ 7-1 UHD 채널과 7–2 UHD모바일 채널이 전송 다중화 (Physical Layer Multiplexing) 되어 온에어 중 ✓ 7-1 채널과 7-2 채널은 영상 품질만 다른 동일 콘텐츠 재난재해 경보서버 ATSC3.0 브로드캐스트 게 이트웨이 ATSC 3.0 표준 하나로 고정수신, 이동수신을 모두 지원한다.
  24. KBS1 DTV 송신망 각 채널별 Radio 송신망 DMB 송신망 KBS2

    DTV 송신망 UHDTV 고정수신 이동수신 ATSC 3.0 표준 하나로 비디오/오디오/데이터 서비스 모두 가능 UHD KBS1채널 UHD KBS2채널
  25. 2021.07.19. 『UHD 혁신서비스(다채널/모바일/양방향) 개시』 [출처] https://www.korea.kr/news/pressReleaseView.do?newsId=156462337&pWise=main&pWiseMain=C2 2021.07.23. ~ 08.08. 2022.02.04.

    ~ 02.20. 2022.09.10. ~ 09.25. 2022.11.21. ~ 12.18.
  26. 2021.07.19. 『UHD 혁신서비스(다채널/모바일 /양방향) 개시』

  27. 2021.07.19. 『UHD 혁신서비스(다채널/모바일/양방향) 개시』

  28. 2021.07.19. 『UHD 혁신서비스(다채널/모바일 /양방향) 개시』

  29. 9-1 KBS1 UHD 9-2 KBS1 HD UHD주조 PGM 대체주조 PGM

    멀티주조 PGM 9-3 KBS 1R 4K-UHD HEVC Encoder HD-SDI Quad 3G-SDI HD-SDI 2K-HD HEVC Encoder IP Multicast IP Multicast ATSC 3.0 IP-MUX IP Multicast IP Multicast ATSC 3.0 Broadcast Gateway IP Multicast IP Multicast PLP 0 /Subframe 0 PLP 1 /Subframe 1 고정수신 전용 이동수신 & 고정수신 겸용 2160 @59.94p 1080 @59.94i Frame Synchronizer HD-SDI 1080 @59.94p Frame Synchronizer LOGO Generator HD-SDI HD-SDI 1080 @59.94i LOGO Generator 3G-SDI 3G-SDI 239.255.9.xx 7-1 KBS2 UHD 7-2 KBS2 HD UHD주조 PGM DTV주조 PGM 4K-UHD HEVC Encoder HD-SDI Quad 3G-SDI 2K-HD HEVC Encoder IP Multicast IP Multicast ATSC 3.0 IP-MUX IP Multicast ATSC 3.0 Broadcast Gateway IP Multicast PLP 0 /Subframe 0 PLP 1 /Subframe 1 고정수신 전용 이동수신 & 고정수신 겸용 2160 @59.94p 1080 @59.94i Frame Synchronizer HD-SDI 1080 @59.94p LOGO Generator HD-SDI 1080 @59.94i 3G-SDI 239.255.7.xx 고정 수신할 경우, 모든 채널 시청 가능 9-1, 9-2, 9-3 / 7-1, 7-2 이동하면서 수신할 경우, 일부 채널만 시청 가능 9-1, 9-2, 9-3 / 7-1, 7-2 239.255.7.xx 239.255.9.xx 12.5Mbps 16.Mbps 2.5Mbps 1.5Mbps 2.5Mbps * HD-SDI : SMPTE ST 292:1998 * 3G-SDI : SMPTE ST 424:2012 • YouTube 권장 1080p59.94 스트리밍 서비스 기준 : 4.5Mbps @ MPEG-4 AVC 2021.07.19. UHD 다채널/모바일 시스템 구성
  30. 15.55 콘텐츠도달률 고정수신 최소요구신호품질 ToV C/N[dB] 0 6.4 8.0 14.9

    27.0 저화질 DMB 고화질 DMB ATSC 1.0 DTV ATSC 1.0 ATSC 3.0 송신기 출력 최소 품질 9-2 HD 9-1 UHD 11-1 UHD 6-1 UHD 7.93 17.13 11.55 콘텐츠도달률 실내수신 9-2 HD 9-1 UHD 11-1 UHD 6-1 UHD 10.05 18.23 14.25 20.06 콘텐츠도달률 이동수신 15km/h 이상 KBS1 MBC SBS 9-2 HD 수신불가 (32k-FFT) 수신불가 (32k-FFT) 이동수신 마진 신호품질(C/N) 이란? 잡음 (Noise) 수신신호 (Signal) C/N 7-2 HD 7-1 UHD 7.93 7-2 HD 7-1 UHD 10.05 7-2 HD 이동수신 마진 KBS2 KBS1 MBC SBS KBS2 KBS1 MBC SBS KBS2 18.23 15.55 11.5 저화질 DMB UHD 모바일 채널과 고정수신 채널 수신율 비교
  31. ATSC 3.0 외장 T-DMB 내장 UHD 모바일 채널 필드테스트 혁신서비스

    체험단용 ATSC 3.0 모바일 수신기
  32. UHD 모바일 채널 필드테스트 [고정수신] 9-1 + 9-2 = 7-1

    + 7-2 15.55dB ≤ 빨간점 7.93dB ≤ 파란점 ≤ 15.55dB [실내수신] SBS [고정수신] SBS [실내수신] 9-1 + 9-2 = 7-1 + 7-2 18.23dB ≤빨간점 10.05dB ≤ 파란점 ≤ 18.23dB 11.55dB 이상 14.25dB 이상 [고정수신] 7-1 [실내수신] 7-1 [고정수신] 9-1 [실내수신] 9-1 15.55dB ≤ 빨간점 17.13dB ≤ 빨간점 20.06dB ≤ 빨간점 18.23dB ≤ 빨간점 SONY 2-RX 안테나 9-1 이동수신 측정값 SNR 기준 (2021.08. ETRI 측정차 측정)
  33. UHD 모바일 수신기 개발 동향

  34. PLP 간 서비스 자동전환 방송망-방송망 간 자동전환 (방송권역 이동시) 방송망-통신망

    간 자동전환 (방송망 절대음영지역 이동시) 채널 자동 전환(Service Following) 기술
  35. 채널 자동 전환(Service Following) 기술 (1) SFN 권역 내 UHD모바일

    채널 자동 전환 35 고정수신용 UHD 신호 이동수신용 HD 신호 실내 Bootstrap Preamble Time Frequency Frame Subframe 0 Subframe n-1 . . . 7-2 PLP#0 7-1 PLP#1 PLP 간 서비스 자동전환
  36. 채널 자동 전환(Service Following) 기술 (2) SFN 권역 이동시 채널

    자동 전환 36 서울 대전 대구 부산 지상파UHD 방송권역 KBS1FM 방송권역 1 2 3 4 5 6 7 8 1 2 3 4 5 6 서울에서 부산까지 경부고속도로를 타고 내려간다고 했을 때, KBS1FM은 6번 가량, UHD모바일은 7번 가량 주파수를 바꿔야만 끊김없는 시청이 가능함. KBS1, MBC, 지역민방 (KBS2, EBS는 해당없음) 방송망-방송망 간 자동전환 (방송권역 이동시)
  37. 채널 자동 전환(Service Following) 기술 (3) 완전 음영 지역에서 5G/WiFi

    자동 전환 37 지상파 직접수신 ATSC 3.0 수신기 5G 통신망 지상파 수신영상 5G 수신영상 지상파 수신영상 음영지역 끊김 (터널/지하) ATSC3.0 방송망 7-1 UHDTV 5G 이동통신망 5G 수신영상 끊김없는 시청 가능 방송망-통신망 간 자동전환 (방송망 절대음영지역 이동시)
  38. UHD BC/BB 하이브리드 서비스: ESG 서비스 (좌) BC채널과 BB채널을 통해

    전달되는 ESG 분량 (우) ATSC 3.0 프로토콜 스택과 ESG 표준 위치 Broadcast Broadband KBS1 KBS2, MBC, 지역민방
  39. ESG 서비스 UHDTV에 인터넷을 연결하면, 양방향 서비스를 즐길 수 있습니다.

    KBS UHD 채널 시청중 [방송안내] 버튼을 눌러 ESG 페이지 진입 [방송안내] 페이지에서 프로그램 선택 [연관컨텐츠] 선택 후 시청 할 컨텐츠 선택 ESG 재난정보 부가서비스 시청
  40. UHD혁신서비스 + 양방향 부가서비스

  41. UHD-IBB 서비스 시청 기본조건 UHDTV에 인터넷을 연결하면, 양방향 서비스를 즐길

    수 있습니다. IBB 서비스 제조연도 2017 2018 2019 2020 2021 삼성전자 ◦(지원) ×(미지원) × × ◦ LG전자 ◦ ◦ ◦ ◦ ×
  42. 코로나19 확산 방지를 위한 ‘방송-통신 연동형 융합서비스’ 24시간 뉴스전문 채널

    코로나19 대응 국민 행동 수칙 KBS뉴스 공식 홈페이지 재난방송매체 KBS 1 Radio ① ② ③ ④ 2020년 4월 13일부터 KBS1 UHD채널에서 ‘재난정보 부가서비스’ 전국 온에어 서비스 개시 UHDTV에 인터넷을 연결하면, 양방향 서비스를 즐길 수 있습니다. ✓ 서비스 동작 예시는 아래 YouTube 영상 참고 https://youtu.be/kHDpWppMkiw ✓ 프로그램 맞춤형으로 서비스 아이템 변경 가능 최근에는 스포츠경기 ‘멀티앵글'서비스 제공 중 4/24(토) 프로야구 2TV 「SSG:키움」 (고척) 3/20(토) 여자프로배구 1TV 「흥국생명:IBK기업은행」 (계양)
  43. 도쿄올림픽/패럴림픽 IBB 부가서비스 운영

  44. 도쿄올림픽/패럴림픽 IBB 부가서비스 운영

  45. 08.09. 제5호 태풍 장미 08.26.~24. 제6호 태풍 바비 09.02.~03. 제7호

    태풍 마이삭 09.06.~07. 제8호 태풍 하이선 IBB 접속데이터 사랑 제일 교회 UHDTV에 인터넷을 연결하면, 양방향 서비스를 즐길 수 있습니다. 주말 주말 주말 주말 주말 ESG 접속데이터 양방향 “데이터"를 통해서, 시청 패턴을 실시간으로 파악
  46. UHD혁신서비스 + 양방향 부가서비스 + 고품질 HDR 서비스 KBS 시청자광장

    / 지상파UHD 혁신서비스 체험관 2020 도쿄하계올림픽 UHD제작 경기는 HLG(BT.2020) 영상으로 제작되었고, 지상파 방송3사 모두 온에어 하였음.
  47. UHD혁신서비스 + 양방향 부가서비스 + 고품질 HDR 서비스 본사 UHD주조

    테스트베드 실험실 ▶
  48. 재난경보방송에 특화된 UHD 방송망을 통해 현재 온에어 중입니다. KBS1 채널을

    직접 수신하여, 재난경보메시지 표시 중 (실제 동작 모습) UHDTV 방송의 경우, ‘TV영상과 별도로’ 재난경보 메시지를 송출 → TV 수상기 뿐만 아니라, 다양한 수신기에서도 고정수신 뿐만 아니라, 이동 수신 상황에서도 재난메시지 확인 가능 (예) 서울시내버스 463번에 UHD수신기 설치 운영 중 2019년 9월부터 UHD주조정실에서 KBS1 및 KBS2 UHD채널을 통해 지진, 태풍, 폭설, 호우, 사회재난 5대 재난 서비스 중
  49. KBS 혁신서비스는 9-2 재난전문채널로 이제 계속됩니다.

  50. [마무리] 지상파 전송 기술의 오늘과 내일: ATSC 1.0, ATSC 3.0,

    5G/WiFi연동 ATSC 1.0 ATSC 3.0 2K-HD 4K-UHD 8K-UHD 19.39Mbps 19.39Mbps MPEG-2 HEVC 19.39Mbps @ VVC? Channel Bonding MIMO 주파수 대역폭 2개를 묶어서 사용 전송률 증가 수평/수직 이중편파를 사용하여 전송률 증가 2021.05.현재 38.78Mbps @ SHVC 고화질화 = 대형스크린 타깃 화소수 4배 압축효율 4배 5G/WiFi 양방향 IP망과 연동하여 전송률 증가
  51. [마무리] UHD+5G 동시 전송 기술, 모든 단말기에서 직접수신이 가능한 빈틈없는

    방송 시청 환경을 만들 수 있습니다. 스마트폰은 5G 신호를 수신해서 이동하면서 방송 시청 집 안의 UHDTV는 방송신호를 수신해서 기존과 동일하게 시청 ATSC 3.0 & 5G 대상실험국 북감악중계소 5G 칩셋이 탑재된 단말기가 곧 ‘텔레비전수상기’
  52. Part 2 : ATSC 3.0 송출/송신 시스템 전반에 대한 이해

    52
  53. ATSC 1.0 방송망 운영 관점에서 “주조–분배망–송신소” ATSC 1.0 A/78a ATSC

    Recommended Practice: Transport Stream Verification Priority of faults TOA (transport stream off-air) POA (program off-air) CM (component missing) QOS (quality of service) TNC (technically nonconformant) The connection between the emission remultiplexer and the 8-VSB modulator is the reference analysis point assumed in this document, as shown in Figure 2.1. 송신소 주조정실
  54. ITU 핸드북에서 정의하고 있는 세대별 지상파 방송 시스템 구조 Note

    that with the advent of advanced 2nd generation transmission and modulations systems an additional block is to introduced between service multiplex and transport, the so-called Gateway. 1세대 방송시스템 2세대 방송시스템 Exciter Exciter
  55. Quad 3G- SDI Quad 3G- SDI 12G-SDI MSW (IKEGAMI) HD

    MUX 주/예 (V+A) (59.94i -> 59.94p) UP-SCALER 주/예 (4K 변환) RACK 1 59.95i / AES RTP/UDP/IP MXF파일 UHD송출서버 (4K-UHD PLAYER) 12G-SDI 1920×1 080 3840×2 160 FS(4ea) (Frame- Synchronizer) 12G-SDI IP (TICO) ① HD PGM ② UHD부조 (TS-2 /TS-12) ③ 사전제작 RACK 2 RACK 2 Quad 3G-SDI IPG 3901(4ea) (V+A) (IP -> SDI) 3840×2 160 SONY XAVC class300(600Mbps) EMS (Evertz) 4K-UHD HEVC ENCODER (KAI-MEDIA) Quad 3G- SDI 12G-SDI TIVIVA (Elemental) CLEAN 5대광역권 (CDR) RACK 5 UHD주조정실 RACK 6 UHD주조정실 RACK 3 ATSC 3.0 본사 베이스밴드 구성
  56. EMS (Evert z) HEVC- ENC (A) Quad 3G- SDI 12G-SDI

    UHD주조 M S W U H D 1 T V CDR Quad 3G-SDI V D A Quad 3G-SDI Quad 3G-SDI 5대 광역권 KT: 대전/ 광주/제주 LG: 부산/ 울산/대구 MNC Quad 3G-SDI Quad 3G-SDI Quad 3G-SDI Quad 3G-SDI 중계 RETURN(주) VSM RETURN(주) KT( 주) KT(예비) Quad 3G-SDI Quad 3G-SDI Quad 3G-SDI Quad 3G-SDI Quad 3G-SDI 중계 RETURN(예비) VSM RETURN(예 비) LG- U+(주) LG-U+(예 비) HEVC- ENC (B) V D A V D A 주 회선 예비 회선 ATSC 3.0 1TV 베이스밴드 분배
  57. ATSC 3.0 2TV STLTP 분배

  58. 4K-UHD HEVC Encoder UP-SALER (For A) 3G C/O (GV) 스크

    롤(CG) F/S 예비 (SAM) F/S 주 (SAM) Quad 3G-SDI 3840×2160 Quad 3G-SDI 3840×2160 HD-SDI NET (본사) Quad 3G-SDI Quad 3G-SDI Aux Out1 Tektronix W/F UP-SALER (DSB) UP-SALER (DSB) HD-SDI UP-SALER (DSB) 로컬 MSW(12G) Gear Box 12G-SDI 12G-SDI 12G-SDI 12G-SDI 12G-SDI Gear Box - S D I 로컬1 NET2 NET1 로컬2 Aux: IN or PGM Quad 3G 지역 1UHD 주조 ATSC 3.0 지역 1TV 베이스밴드 구성 UDP/IP
  59. ATSC 3.0 방송망 운영 관점에서 “주조–분배망–송신소” BGW (A) BGW (B)

    IP-C/O IP3 IP4 IP1 IP2 UHD주조 전송SW(A) UHD주조 전송SW(B) IOR M/W(8G) IOR M/W(11G) 송신기 (A) 송신기 (B) TACU UHDTV RF 온에어 에어코드 ATSC 3.0 DECODER 마루이엔지 ATSC 3.0 DECODER BGW로그 IP-C/O 로그 DSBroadcast ATSC 3.0 DECODER EXCITER 로그 DSBroadcast ATSC 3.0 DECODER 송신소/TVR M/W(11G) 마루이엔지 ATSC 3.0 DECODER 전송SW(A) IP전용 M/W TELEVIEW ATSC 3.0 DECODER 마루이엔지 ATSC 3.0 DECODER M/W(8G), 클레버로직 ATSC 3.0 DECODER 전송SW(B)
  60. UHD주조종실 - Baseband - Headend - 디코더 - 멀티뷰어 STL

    분배망 (IOR) - STL 전송스위치 - 디코더 ATSC 3.0 방송망 운영 관점에서 “주조–분배망–송신소”
  61. BGW(Broadcast Gateway) 의 주요 기능 ✓ [Baseband Packet] 비디오/오디오/데이터 채널

    UDP/IP패킷을 수신하여 수신조건별로 해당 PLP로 할당 ✓ [Preamble Packet] 각 PLP/Subframe의 물리계층 전송 파라미터를 설정하고, 전송률[Mbps] 결정 ✓ [Timing & Management Packet] SFN 조건 충족을 위한 송신기 제어정보 전송 Baseband Preamble Timing & Management LMT
  62. (참고) 송신기 N대와 Broadcast Gateway 1대 IBC KBS KBS 광교

    남산 관악산 GPS ATSC3.0 Exciter GPS ATSC3.0 Exciter GPS Broadcast Gateway PTP ✓ SFN은 모든 장비들이 “똑같은 시계를 사용(동기화)” 해야 한다. = GPS 신호 또는 PTP 시간을 기준으로 삼음 결론적으로, 국제원자시 TAI 시각에 시각 동기화 ✓ 모든 송신기들은 입력 신호 중 Timing Data Packet과 Preamble Data Packet을 Parsing하여 그 값과 동일하게 송신기를 설정해야 한다. = 반드시 STL Interface 사용으로 송신기 설정 개별 송신기에서 송신파라미터 설정 안 됨 ∴ 모든 송신파라미터 설정은 Broadcast Gateway에서만! GPS ATSC3.0 Exciter SFN 조건 #2 똑같은 시간 SFN 조건 #1 똑같은 데이터 SFN 조건 #3 똑같은 주파수 * PTP = IEEE1588v2 PTP(Precision Time Protocol)
  63. ATSC 3.0 방송망 운영 관점에서 주요 관리항목 본사 UHD주조 IP전용회선

    자영M/W 송신소 중계소 STLTP /RTP/UDP/IP STLTP /RTP/UDP/IP RF Broadcast Gateway 관리장치 L3 Switch Exciter ATSC 3.0 UHDTV 관리항목 ✓ PTP SYNC ✓ BGW출력신호 안정화 연관표준 A/324 A/322 - ✓ 스위치포트 Shutdown (2021년 현재, 국내표준화 중) PTP/UDP/IP ✓ GPS SYNC ✓ SFN의 3가지 조건 . Packet Sequence Error (Packet Drop) . Network Delay 변동 허용범위 초과 . 동일 주파수 조건 GPS IP Multicast 기반 RF Mute
  64. ▪ Transmitter Center Frequency shall be maintained at the nominal

    Center Frequency ±0.5Hz, with a long-term-averaged error of zero [A/324] 64 Oscillators available for Meinberg GPS Receivers / Time Servers: TCXO, OCXO, Rubidium TCXO OCXO LQ OCXO SQ OCXO MQ OCXO HQ OCXO DHQ Rubidium (only available for 3U models) short term stability (τ = 1 sec) 2·10-9 1·10-9 5·10-10 2·10-10 5·10-12 2·10-12 2·10-11 accuracy of PPS (pulse per sec) < ±100 ns < ±100 ns < ±50 ns < ±50 ns < ±50 ns < ±50 ns < ±50 ns phase noise 1Hz -60dBc/Hz 10Hz -90dBc/Hz 100Hz -120dBc/Hz 1kHz -130dBc/Hz 1Hz -60dBc/Hz 10Hz -90dBc/Hz 100Hz -120dBc/Hz 1kHz -130dBc/Hz 1Hz -70dBc/Hz 10Hz -105dBc/Hz 100Hz -125dBc/Hz 1kHz -140dBc/Hz 1Hz -75dBc/Hz 10Hz -110dBc/Hz 100Hz -130dBc/Hz 1kHz -140dBc/Hz 1Hz < -85dBc/Hz 10Hz < -115dBc/Hz 100Hz < -130dBc/Hz 1kHz < -140dBc/Hz 1Hz < -80dBc/Hz 10Hz < -110dBc/Hz 100Hz < -125dBc/Hz 1kHz < -135dBc/Hz 1Hz -75dBc/Hz 10Hz -89dBc/Hz 100Hz -128dBc/Hz 1kHz -140dBc/Hz accuracy free run, one day ±1·10-7 ±1Hz (Note1) ±2·10-8 ±0.2Hz (Note1) ±5·10-9 ±50mHz (Note1) ±1.5·10-9 ±15mHz (Note1) ±5·10-10 ±5mHz (Note1) ±1·10-10 ±1mHz (Note1) ±2·10-11 ±0.2mHz (Note1) accuracy, free run, 1 year ±1·10-6 ±10Hz (Note1) ±4·10-7 ±4Hz (Note1) ±2·10-7 ±2Hz (Note1) ±1·10-7 ±1Hz (Note1) ±5·10-8 ±0.5Hz (Note1) ±1·10-8 ±0.1Hz (Note1) ±5·10-10 ±5mHz (Note1) accuracy GPS-synchronous, average 24h ±1·10-11 ±1·10-11 ±1·10-11 ±5·10-12 ±1·10-12 ±1·10-12 ±1·10-12 accuracy of tim e free run, 1 day ± 4.3 ms ± 865 µs ± 220 µs ± 65 µs ± 22 µs ± 4.5 µs ± 1.1 µs accuracy of tim e free run, 7 days ± 128 ms ± 32 ms ± 9.2 ms ± 2.9 ms ± 1.0 ms ± 204 µs ± 34 µs accuracy of tim e free run, 30 days ± 1.1 s ± 330 ms ± 120 ms ± 44 ms ± 16 ms ± 3.3 ms ± 370 µs accuracy of tim e free run, 1 year ± 16 s ± 6.3 s ± 4.7 s ± 1.6 s ± 788 ms ± 158 ms ± 8 ms temperature depandant drift f r ee ±1·10-6 (-20...70°C) ±2·10-7 (0...60°C) ±1·10-7 (-10...70°C) ±5·10-8 (-20...70°C) ±1·10-8 (5...70°C) ±2·10-10 (5...70°C) ±6·10-10 (-25...70°C) Oscillator Optio n s SFN 유지를 위해서는 반드시 GPS에 Locking 되어 있어야 한다.
  65. Q) 브로드캐스트 게이트웨이에서 송신기로 PTP 기준 시각 정보를 전달해 줘야하는

    것 아닌가요? PTP는 양방향으로 정밀한 시각을 맞추는 프로토콜 GPS는 단방향으로 정밀한 시각을 맞추는 프로토콜 ✓ GPS 위성안에는, TAI와 동기가 맞춰진 정밀시계가 탑재되어 있음. ✓ 내부 클럭을 기준으로 기준 시각을 매초 발사함. (예) 세슘 원자시계 3000만년에 1초의 오차 24개 상시 운용 위성 + 예비위성으로 구성 ✓ PTP Grandmaster는 상시 TAI와 동기가 맞춰진 상태
  66. Q) 브로드캐스트 게이트웨이에서 송신기로 PTP 기준 시각 정보를 전달해 줘야하는

    것 아닌가요? PTP는 양방향으로 정밀한 시각을 맞추는 프로토콜 GPS는 단방향으로 정밀한 시각을 맞추는 프로토콜 (단점) 정밀도를 보장하는 거리가 제한적 (단점) 정밀도를 보장하기 위해서는 오랜 시간 동기화가 필요 [출처] Michael A. Lombardi(National Institute of Standards and Technology), Chapter 17. Fundamentals of Time and Frequenc
  67. 윤초(Leap Second) 보정에 대해 늘 생각하고 있어야 한다. TAI (International

    Atomic Time), GPS, UTC (Coordinated Universal Time) time 1972.01.01. 1955.07. TAI zero Leap second 체계적인 공표 시작 Leap seconds = 10 Leap seconds = 18 전세계 50국 70소 이상 원자시계 구축 시작 현재 2016.12.31. GPS zero Leap seconds = 9 TAI - GPS = 19 (고정) TAI = UTC – 37 (변동) GPS = UTC – 18 (변동) 세슘 원자 외 루비듐 원자를 이용할 수 있다는 권고 채택. 1956. 1900년 1월 0일 12시 기준으로 태양년의 1/31556925.9747 1967. 1997. 2004. 절대 영도(-247도씨)에서 정지한 상태 조건 추가 세슘-133 원자의 바닥상태에 있는 두 초미세 준위 사이의 전이에 대응하는 복사선(방사)의 9,192,631,770 주기의 지속시간 국제도량형위원회(CIPM) 지구가 한 번 자전하는 데 걸리는 시간을 '1일'이라고 정하고, 그 24분의 1을 '1시간', 그 60분의 1을 '1분', 또 그 60분의 1을 '1초' 1980.01.06. 1958.01.01.
  68. ✓ MND ≥ 실제 네트워크 딜레이 + 송신기 프로세싱 딜레이

    : RF OK ✓ MND < 실제 네트워크 딜레이 + 송신기 프로세싱 딜레이 : RF Mute 송신기 2 프로세싱 딜레이 버퍼 시간 실제 네트워크 딜레이 2 송신기 1 프로세싱 딜레이 버퍼 시간 실제 네트워크 딜레이 1 Network 1 Network 2 Transmitter 1 Transmitter 2 Packet Release Time Bootstrap Emission Time • • • Packet 3 Packet 2 Packet 1 Packet N BGW 시그널링 39 num_emission_tim 6 uimsbf num_xmtrs_in_group 6 uimsbf xmtr_group_num 7 uimsbf maj_log_override 3 bslbf num_miso_filt_codes 2 bslbf tx_carrier_offset 2 tcimsbf reserved 6 for (i=0; i<6; i++) ‘1’ } Bootstrap_Timing_Data () { for (i=0; i<=num_emission_tim; i++) seconds 32 uimsbf nanoseconds 32 uimsbf } } Per_Transmitter_Data () { for (i=0; i<=num_xmtrs_in_group; i++) { xmtr_id 13 uimsbf tx_time_offset 16 tcimsbf txid_injection_lvl 4 uimsbf miso_filt_code_index 2 bslbf reserved 29 for (i=0; i<29; i++) ‘1’ } } Packet_Release_Time () { pkt_rls_seconds 4 uimsbf pkt_rls_a-milliseconds 10 uimsbf reserved 2 ‘11’ } Error_Check_Data () { crc16 16 uimsbf } } ATSC 3.0 Broadcast Gateway 2018 Scheduler / Studio to Transmitter Link 5 January 2018 Table 8.3 Timing and Management Stream Packet Payload Syntax No. of Bits Format Timing & Management_Packet (TMP) () { Structure_Data () { length 16 uimsbf version_major 4 uimsbf version_minor 4 uimsbf maj_log_rep_cnt_pre 4 uimsbf maj_log_rep_cnt_tim 4 uimsbf bootstrap_major 4 uimsbf bootstrap_minor 4 uimsbf min_time_to_next 5 uimsbf system_bandwidth 2 uimsbf bsr_coefficient 7 uimsbf preamble_structure 8 uimsbf ea_wakeup 2 bslbf num_emission_tim 6 uimsbf num_xmtrs_in_group 6 uimsbf xmtr_group_num 7 uimsbf maj_log_override 3 bslbf num_miso_filt_codes 2 bslbf tx_carrier_offset 2 tcimsbf reserved 6 for (i=0; i<6; i++) ‘1’ } Bootstrap_Timing_Data () { for (i=0; i<=num_emission_tim; i++) seconds 32 uimsbf nanoseconds 32 uimsbf } } Per_Transmitter_Data () { Exciter 시그널링 ATSC 3.0 Exciter • • • Frame 3 Frame 2 Frame 1 Frame N ATSC S32-230r72 Revision o 9.3 Syntax and Semantics for L1-Detail D The syntax and field semantics of the L1 following subsections. The names of sign Table 9.8 L1-De Syntax L1_Detail_signaling() { L1D_version L1D_num_rf for (L1D_rf_id=1 .. L1D_num_rf) { L1D_bonded_bsid reserved } if (L1B_time_info_flag != 00) { L1D_time_sec L1D_time_msec if (L1B_time_info_flag != 01) { L1D_time_usec if (L1B_time_info_flag != 10) { L1D_time_nsec } } } for (i=0 .. L1B_num_subframes) { if (i > 0) { Maximum Network Delay (MND) 네트워크 딜레이 계산: 장시간 관찰 결과, ‘평균치±2ms’ 이내 유지하면 정상 Instantaneous Network Delay = Current_GPS_Time() – Packet_Release_Time() 단, Network Delay 측정을 위해서는 GPS(또는 PTP)에 동기화된 장치 필요 = Bootstrap_Timing_Data() – Packet_Release_Time()
  69. IP UDP RTP IP UDP RTP Section 8.3.4 Section 8.2.1

    Tunneled Packet Header BBP Fragment Base Band Packet (BBP) Preamble Preamble IP UDP RTP * Tunnel Packet Payload Fixed-size Tunnel Packet Tunneled Packet Stream Tunnel Packet Header Figure 8.3 Detail T&M IP UDP RTP Section 8.3.1 T&M • • • • • • 분배망에서의 패킷은 똑같은 Multicast IP를 가진 데이터, 한가지 종류만 전달 Broadcast Gateway 내부 Broadcast Gateway 외부출력 패킷 송신기도 알고, 수신기도 알아야 하는 정보 송신기는 알아야하는데, 수신기는 몰라도 되는 정보 실제 오디오/비디오 데이터 **Maximum Transmission Unit (MTU) BaseBand Packet Preamble Packet Timing & Management Packet 239.0.51.48:30000+plp_id 239.0.51.48:30064 239.0.51.48:30065 239.255.7.30:5000
  70. STLTP는 RTP Header 내 Packet Sequence를 확인하여 Error를 검출 RTP

    Header 내 Sequence Number 값이 연속적인지 확인하여, 누락된 패킷 번호로 Packet Drop 여부를 금방 확인할 수 있다. 0~65535를 순환 Wireshark 상에서, Decode As → RTP 선택 후 Seq=00000 숫자가 연속적인지 확인
  71. STL-FEC 기능 덕분에 STLTP 패킷 한 두개 깨져서는 송신기에 영향을

    주지 않음. 45 Multiplexer Various UDP/IP Streams BBF, Timing, Control, etc. FEC Encoder Transmitter FEC Row RTP/UDP/IP Stream FEC Column RTP/UDP/IP Stream STL Receiver 8 SMPTE 2022-1 FEC Decoder 9 IP Content Tunnel SMPTE ST 2022-1 RTP/UDP/IP Stream FEC Row RTP/UDP/IP Stream FEC Column RTP/UDP/IP Stream 10 IP Tunnel RTP/UDP/IP Stream w/ Fixed Packet Size PLP Demultiplexer 11 Various UDP/IP Streams BBF, Timing, Control, etc. 12 13 Figure 8.1 STL Transmission diagram. The following paragraphs describe each of the call-outs, (1) through (13), in Figure 8.1. Items (1) through (5) are further detailed in the FEC Encoding Process Section 8.5.1 below. 1) The multiple paths represent the RTP/UDP/IP Streams that are generated for each PLP as described in Sections 8.2, 8.3, and 8.3.4. These are referred to as the Tunneled Packet Streams. 2) The PLP Mux is configured to accept packets from multiple RTP/UDP/IP multicast Streams to be tunneled. 3) The Tunneled Packets are grouped into fixed-size payloads to accommodate the SMPTE ST 2022-1 FEC process [8]. The STLTP RTP fields are defined to allow the Tunneled Packet Streams to be easily recovered and forwarded (refer to Section 8.6 below). The fixed packet size of the ST 2022-1 packets is not defined by this standard and is assumed to be configurable. It is expected that the packet size is within the typical 1500 MTU byte range limit. Note that the larger the packets the longer the latency when performing FEC Transmitter 1 Transmitter 2 Transmitter 3 ATSC A/324:2018 Scheduler / Studio to Transmitter Link 5 January 2018 payloads for easy reconstruction on the Data Consumer side. All other aspects of ST 2022-1 remain identical to the capabilities described in [8] including support for any FEC constraints detailed in Section 8 of that standard. Note that latency will be longer with larger packet lengths. 8.5 STL Transmission Protocol Design Figure 8.1 provides a detailed diagram of the portion of the broadcast Physical Layer chain described by this section. Refer to Figure 4.2 for a complete diagram of the system architecture. PLP Multiplexer Various UDP/IP Streams BBF, Timing, Control, etc. SMPTE 2022-1 FEC Encoder IP Tunnel RTP/UDP/IP Stream w/ Fixed Packet Size STL Transmitter IP Content Tunnel SM PTE ST 2022-1 RTP/UDP/IP Stream FEC Row RTP/UDP/IP Stream FEC Column RTP/UDP/IP Stream 1 2 3 4 5 6 7 STL STL Receiver 8 SM PTE 2022-1 FEC Decoder 9 IP Content Tunnel SMPTE ST 2022-1 RTP/UDP/IP Stream FEC Row RTP/UDP/IP Stream FEC Column RTP/UDP/IP Stream 10 IP Tunnel RTP/UDP/IP Stream w/ Fixed Packet Size PLP Demultiplexer 11 Various UDP/IP Streams BBF, Timing, Control, etc. 12 13 Figure 8.1 STL Transmission diagram. The following paragraphs describe each of the call-outs, (1) through (13), in Figure 8.1. Items (1) through (5) are further detailed in the FEC Encoding Process Section 8.5.1 below. 1) The multiple paths represent the RTP/UDP/IP Streams that are generated for each PLP as described in Sections 8.2, 8.3, and 8.3.4. These are referred to as the Tunneled Packet Streams. PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. When nsidering system configurations, data rates and interfaces between functional blocks must be ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a System PLP De SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Securit Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possib considering system configurations, data rates and interfaces between functional block taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a single entity called PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Whe nsidering system configurations, data rates and interfaces between functional blocks must b ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a System PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Whe nsidering system configurations, data rates and interfaces between functional blocks must b ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a System PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Whe nsidering system configurations, data rates and interfaces between functional blocks must b ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a System PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Whe nsidering system configurations, data rates and interfaces between functional blocks must b ken into account in developing practical implementations. System Manager PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. STL Payload (STLTP) EAS Trig. w/External ALP Gen w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager nfiguration aspects of the overall system are controlled by a single entity called a Syste anager, which is represented in Figure 4.2 only as a connection to the Configuration Manager PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder hentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP Timing & Mgt Generator STL Payload (STLTP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber STL Payload (STLTP) ALP Gen PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys ystem architecture. hitecture; other configurations are possible. When and interfaces between functional blocks must be plementations. are controlled by a single entity called a System nly as a connection to the Configuration Manager in an be anything from a web-page based setup screen Korean Broadcasting System | Broadcast Technical Research Institute Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI Bootst Spectr Shap ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PL Securi Da Process Security Data S Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UD RT IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations ar Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI Boots Spec Sha ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Secu D Proces Security Data Keys Figure 4.2 System architecture. Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI Boots Spec Sha ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Secu D Proces Security Data Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI Boots Spec Sha ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Secu D Proces Security Data Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible Korean Broadcasting System | Broadcast Technical Research Institute Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI B S ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Demu SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream S Pr Security D Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possib Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Dem SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Security Keys Figure 4.2 System architecture. Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Dem SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Security Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possib Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PLP Dem SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream P Security Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possib SM ST 20 EC Dec SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. EAS Trig. IP UDP RTP PLP Mux PLPs Device Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are considering system configurations, data rates and interfaces between functional taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a single entity c Manager, which is represented in Figure 4.2 only as a connection to the Configura the Broadcast Gateway. A System Manager can be anything from a web-page bas with manual data entry to a fully automated system; its scope is control of an ov system. The System Manager provides high-level configuration parameters for nu Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers Fr Fr Fr Fr Fr ST D SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. ATSC S32-266r33 Revision of A/324:2018, S Bit Int’l FEC Mapper LDM MIMO ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs Timing Manager B U F F E R B U F F E R PLPs GNSS Time TAD IP Packetizer Baseband Packetizers PLPs Scheduler Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/Internal ALP Gen IP UDP RTP Figure 4.2 ALP Mux ALP Encapsulation ALPs Data Source Data Source Data Source Data Source IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) Broadcast Gateway w/Internal ALP Gen IP UDP RTP Figure 4.2 sho considering system taken into account i System Man Configuration aspe Manager, which is r the Broadcast Gate with manual data e system. The System functions. The Syst chain. It controls th configurations of t sessions that suppo SMPTE ST 2022-1 ECC Encoder Authentication STL Xmtr IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads Data Sources (MDCoIP) STL Lin IP/UDP/R Microwave/Sate ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. EAS Trig. IP UDP RTP PLP Mux PLPs Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configur considering system configurations, data rates and interfaces between taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a sing SMPTE ST 2022-1 ECC Encoder Authentication STL Xmtr IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. EAS Trig. IP UDP RTP PLP Mux PLPs Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configuratio considering system configurations, data rates and interfaces between fun taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a single ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver ALPTP Formatting IP UDP RTP ALPs ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber Preamble Information Timing & Mgt Information STLTP Coded Modulation Input Formatting Framing/ Structure Waveform Generation Preamble Parser Buffer Broadcast Gateway Figure 4.1 High-level overview of system configuration. o-one correspondence between individual Streams of ALP packets and prepare ALP packets for Transmission, in the Broadcast Gateway, the ALP lated in Baseband Packets (BBPs), which have defined sizes that are meter (Kpayload) related to the specific characteristics of the particular PLP(s) e carried. The sizes of the BBPs in a given Stream are set to assure that the the related PLP in a frame is filled by the BBPs derived from an associated ALP packets either are segmented or are concatenated so that they fill the e BBPs carrying them as completely as possible without overflowing the ow of data through the system, several buffers are required to hold data for ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver ALPTP Formatting IP UDP RTP ALPs ALP Generation ALPs Data Sources ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber ATSC A/330 ALP & A/331 Signaling, etc. Transport Layer System Manager Preamble Information Timing & Mgt Information STLTP Coded Modulation Input Formatting Framing/ Structure Waveform Generation Preamble Parser Buffer Broadcast Gateway DSTP Broadcast Gateway w/Internal ALP Gen. Figure 4.1 High-level overview of system configuration. There is a one-to-one correspondence between individual Streams of ALP packets and individual PLPs. To prepare ALP packets for Transmission, in the Broadcast Gateway, the ALP packets are encapsulated in Baseband Packets (BBPs), which have defined sizes that are determined by a parameter (Kpayload) related to the specific characteristics of the particular PLP(s) in which they will be carried. The sizes of the BBPs in a given Stream are set to assure that the assigned capacity of the related PLP in a frame is filled by the BBPs derived from an associated ALP packet Stream. ALP packets either are segmented or are concatenated so that they fill the allocated space in the BBPs carrying them as completely as possible without overflowing the available space. ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver ALPTP Formatting IP UDP RTP ALPs ALP Generation ALPs Data Sources ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber ATSC A/330 ALP & A/331 Signaling, etc. Transport Layer System Manager Preamble Information Timing & Mgt Information STLTP Coded Modulation Input Formatting Framing/ Structure Waveform Generation Parser Buffer Broadcast Gateway DSTP Broadcast Gateway w/Internal ALP Gen. Figure 4.1 High-level overview of system configuration. There is a one-to-one correspondence between individual Streams of ALP packets and individual PLPs. To prepare ALP packets for Transmission, in the Broadcast Gateway, the ALP packets are encapsulated in Baseband Packets (BBPs), which have defined sizes that are determined by a parameter (Kpayload) related to the specific characteristics of the particular PLP(s) in which they will be carried. The sizes of the BBPs in a given Stream are set to assure that the assigned capacity of the related PLP in a frame is filled by the BBPs derived from an associated ALP packet Stream. ALP packets either are segmented or are concatenated so that they fill the allocated space in the BBPs carrying them as completely as possible without overflowing the available space. ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver ALPTP Formatting IP UDP RTP ALPs s ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber Preamble Information Timing & Mgt Information STLTP Broadcast Gateway t al Figure 4.1 High-level overview of system configuration. -to-one correspondence between individual Streams of ALP packets and prepare ALP packets for Transmission, in the Broadcast Gateway, the ALP ulated in Baseband Packets (BBPs), which have defined sizes that are ameter (Kpayload) related to the specific characteristics of the particular PLP(s) be carried. The sizes of the BBPs in a given Stream are set to assure that the f the related PLP in a frame is filled by the BBPs derived from an associated . ALP packets either are segmented or are concatenated so that they fill the he BBPs carrying them as completely as possible without overflowing the flow of data through the system, several buffers are required to hold data for ignment of data emission. Buffering also is required in certain instances to o be obtained from a data Stream and used to control particular functionality e the corresponding data is processed further. Two specific instances of such e system. The first buffer inserts at least one Physical Layer frame of delay in ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver TP tting IP UDP RTP ALPs ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber Preamble Information Timing & Mgt Information STLTP Broadcast Gateway ure 4.1 High-level overview of system configuration. one correspondence between individual Streams of ALP packets and epare ALP packets for Transmission, in the Broadcast Gateway, the ALP ed in Baseband Packets (BBPs), which have defined sizes that are ter (Kpayload) related to the specific characteristics of the particular PLP(s) arried. The sizes of the BBPs in a given Stream are set to assure that the e related PLP in a frame is filled by the BBPs derived from an associated LP packets either are segmented or are concatenated so that they fill the BBPs carrying them as completely as possible without overflowing the of data through the system, several buffers are required to hold data for ment of data emission. Buffering also is required in certain instances to e obtained from a data Stream and used to control particular functionality e corresponding data is processed further. Two specific instances of such ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver ALPTP Formatting IP UDP RTP ALPs ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber Preamble Information Timing & Mgt Information STLTP Broadcast Gateway t l Figure 4.1 High-level overview of system configuration. -to-one correspondence between individual Streams of ALP packets and prepare ALP packets for Transmission, in the Broadcast Gateway, the ALP ulated in Baseband Packets (BBPs), which have defined sizes that are ameter (Kpayload) related to the specific characteristics of the particular PLP(s) e carried. The sizes of the BBPs in a given Stream are set to assure that the the related PLP in a frame is filled by the BBPs derived from an associated ALP packets either are segmented or are concatenated so that they fill the he BBPs carrying them as completely as possible without overflowing the low of data through the system, several buffers are required to hold data for ignment of data emission. Buffering also is required in certain instances to o be obtained from a data Stream and used to control particular functionality e the corresponding data is processed further. Two specific instances of such e system. The first buffer inserts at least one Physical Layer frame of delay in sor to enable sending Preamble information for a given Physical Layer frame ECC Decoding & STLTP Demultiplexing STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP STLTP Formatting & ECC Encoding STL Pre-Processor PLPs Configuration Mgr /Scheduler ALPTP Receiver TP tting IP UDP RTP ALPs ALPTP STLTP STL Link IP/UDP/RTP Microwave/Satellite/Fiber Preamble Information Timing & Mgt Information STLTP Broadcast Gateway ure 4.1 High-level overview of system configuration. one correspondence between individual Streams of ALP packets and epare ALP packets for Transmission, in the Broadcast Gateway, the ALP ed in Baseband Packets (BBPs), which have defined sizes that are ter (Kpayload) related to the specific characteristics of the particular PLP(s) arried. The sizes of the BBPs in a given Stream are set to assure that the e related PLP in a frame is filled by the BBPs derived from an associated LP packets either are segmented or are concatenated so that they fill the BBPs carrying them as completely as possible without overflowing the of data through the system, several buffers are required to hold data for ment of data emission. Buffering also is required in certain instances to e obtained from a data Stream and used to control particular functionality e corresponding data is processed further. Two specific instances of such stem. The first buffer inserts at least one Physical Layer frame of delay in PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a Syste P SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream S Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are poss considering system configurations, data rates and interfaces between functional bloc taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a single entity calle PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a Syste PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager onfiguration aspects of the overall system are controlled by a single entity called a Syste PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads o System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr STL Payload (STLTP) EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. Wh nsidering system configurations, data rates and interfaces between functional blocks must ken into account in developing practical implementations. System Manager PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. STL Payload (STLTP) EAS Trig. w/External ALP Gen w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authenticatio USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are possible. W nsidering system configurations, data rates and interfaces between functional blocks must en into account in developing practical implementations. System Manager nfiguration aspects of the overall system are controlled by a single entity called a Sys anager, which is represented in Figure 4.2 only as a connection to the Configuration Manage PLP Demux SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder entication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UDP RTP iming & Mgt enerator STL Payload (STLTP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber STL Payload (STLTP) w/External ALP Gen PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream PLPs Authentication USB Crypto Token Security Device Security Data Processor Keys Security Data Stream Keys ystem architecture. hitecture; other configurations are possible. When and interfaces between functional blocks must be lementations. are controlled by a single entity called a System nly as a connection to the Configuration Manager in an be anything from a web-page based setup screen Korean Broadcasting System | Broadcast Technical Research Institute Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR GI ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP UD RT IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr ST Paylo (STL EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are po Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Encoder Authentication STL Xmtr IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configuratio Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR G ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP U R IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr S Pay (ST EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR G ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP U R IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr S Pay (ST EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are po Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR G ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP U R IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr S Pay (ST EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are po Korean Broadcasting System | Broadcast Technical Research Institute Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Decoder SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are p Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022-1 ECC Encoder Authentication STL Xmtr IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fib ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurati Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers Preamble Parser PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022- ECC Decode SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022- ECC Decode SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are p Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers PLPs PLPs PLPs PLPs PLPs PLPs PLPs PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr PHY Fr SMPTE ST 2022- ECC Decode SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler PLPs ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are p S D SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs EAS Trig. IP UDP RTP PLP Mux PLPs Processor Security Data Stream Keys Figure 4.2 System architecture. Figure 4.2 shows a possible system architecture; other configurations are considering system configurations, data rates and interfaces between functiona taken into account in developing practical implementations. System Manager Configuration aspects of the overall system are controlled by a single entity Manager, which is represented in Figure 4.2 only as a connection to the Configur the Broadcast Gateway. A System Manager can be anything from a web-page ba with manual data entry to a fully automated system; its scope is control of an o Bit Int’l FEC Mapper LDM MIMO Time Int’l OFDM Framer/ Preamble Inserter Freq Int’l Pilot/ Tone Reserve MISO IFFT PAPR ≤ 1sec Network Comp. Buffers Fr Fr Fr Fr Fr Fr SMP ST 20 EC Deco SMPTE ST 2022-1 ECC Encoder Authentication STL Rcvr STL Xmtr IP UDP RTP IP UDP RTP IP UDP RTP IP Packetizers Baseband Packetizers PLPs PLPs Scheduler Timing & Mgt Generator Preamble Generator ALP Demux ALP Mux IP UDP RTP ALPs ALP Encapsulation ALPs Data Source Data Source Data Source Data Source Scrambler ALP Payload (ALPTP) STL Payload (STLTP) IP (ROUTE/MMT), TS, Generic Data In DSTP Payloads From/To System Manager (BXF) To/From Data Sources (MDCoIP) STL Link IP/UDP/RTP Microwave/Satellite/Fiber ≤ 1 Phy Frame Delay (≤ 5secs) ALP Buffers ALPs LLS Ind. Configuration Mgr EAS Trig. Broadcast Gateway w/External ALP Gen Broadcast Gateway w/Internal ALP Gen IP UDP RTP PLP Mux PLPs USB Crypto Token Security Device Security Data Processor Security Data Stream Keys Figure 4.2 System architecture. ATSC 3.0 Gateway SMPTE 2022-1 FEC 적용 예시 (L,D)=(8,5) 전송률 증가율 = = 32.5% 8+5 40 5004 5002 239.255.9.30:5000 BGW Setting (STL)
  72. (a) 수도권 NEC(ProTV) 송신기 화면 (b) 광역권 R&S 송신기 화면

    STL-FEC 기능 덕분에 STLTP 패킷 한 두개 깨져서는 송신기에 영향을 주지 않음. 다만, Exciter 로그 상에서 복원된 Packet이 있는지 주기적인 확인이 필요함.
  73. 두 송신기 신호가 혼신으로 작용하는 경우 73 두 송신기가 SFN에

    정상적으로 잘 묶여 있는 경우 OFDM 심볼 데이터 보호구간 딜레이 송신기 간격 송신기 간격 OFDM 심볼 데이터 보호구간 딜레이 ATSC 3.0 보호 구간 패턴 192 384 512 768 1024 1536 2048 2432 3072 3684 4096 4864 Maximum Delay [us] 27.78 55.56 74.07 111.11 148.15 222.22 296.30 351.85 444.44 527.78 592.59 703.70 Relative Distance [km] 8.32 16.65 22.21 33.31 44.42 66.63 88.84 105.50 133.26 158.25 177.68 211.00 SFN 신호중첩 지역에서 ‘반드시’ 모든 송신소로부터 신호가 보호구간(Guard Interval) 이내에 들어와야 함.
  74. SFN 딜레이 오프셋 감소 경우 SFN Network Design Simulation Amplitude

    [dB] Delay Time [us] 0 50 200 150 100 -50 -100 -150 -200 0 -5 -10 -15 -20 -25 -30 Amplitude [dB] Delay Time [us] 0 50 200 150 100 -50 -100 -150 -200 0 -5 -10 -15 -20 -25 -30 OFDM 보호구간 딜레이 조절 전 딜레이 조절 후 Amplitude [dB] Delay Time [us] 0 50 200 150 100 -50 -100 -150 -200 0 -5 -10 -15 -20 -25 -30 Amplitude [dB] Delay Time [us] 0 50 200 150 100 -50 -100 -150 -200 0 -5 -10 -15 -20 -25 -30 OFDM 보호구간 딜레이 조절 전 딜레이 조절 후 SFN 딜레이 오프셋 증가 경우 딜레이 오프셋 조절 전 딜레이 오프셋 조절 후 SFN 손실 발생 SFN 이득 발생 74 송신기 간 딜레이 오프셋이 틀어지지 않았는지 ‘주기적으로’ SFN 신호중첩 지역에서 확인이 필요함.
  75. TxID 신호가 검출된 경우 TxID 신호가 검출되지 않은 경우 SFN

    딜레이 오프셋 최적화를 위해서는 TxID 적용이 필수적임. ✓ SFN 방식에서는 모든 송신기가 ‘동일한 주파수’를 사용하기 때문에, 각각의 송신기 신호를 구별하기 위해 반드시 별도의 식별부호 삽입 필요. (예) DMB : TII (Transmitter Identification Information) ✓ ATSC3.0 에서는 송신기 식별부호를 TxID(Transmitter Identification)로 명명
  76. ` 1TV TxID 분배표는 TTA 가이드라인 문서(TTAR-07.0026)에서 확인할 수 있음.

    ` 2TV
  77. 77 개별 송신기 딜레이 오프셋은 100ns 단위로 Exciter에서 조절 가능함.

  78. *A : 여러 전달망 Switch를 통과하면서, 신호가 제때 안정적으로 전달되는지

    관찰 필요 . Packet_Release_Time()으로 단간단간 SFN Delay를 정확히 계산할 수 있음. . RTP Sequence를 추적함으로써, Packet Drop 검출 가능 *B : CISCO 스위치 자체의 이상 유무를 중앙에서 통합 관제하여, 장애를 즉각 감시하고 조치 목적 *C : 입력 신호가 정상이더라도, GPS SYNC 이상으로 또는 Exciter 처리시간 이상 급등으로 MUTE 발생 가능 주 Exciter GPS 주 Broadcast Gateway Microwave (Wireless) IP Network (Wireline) PTP [ UHD주조 ] [ UHD송신소 ] 예비 Broadcast Gateway IP-MUX IP Changeover IP Changeover IP1 예비 Exciter IP2 [A] Network Delay Packet Drop 관리 [B] RF MUTE 관리 STLTP 모니터링 장치 STLTP 모니터링 장치 [B] 네트워크 스위치 장애 관리 NMS 장치 전국 UHD-SFN 통합 모니터링 시스템 구축 (진행중)
  79. HEVC 인코더 ATSC3.0 Transmitter IP Multiplexer Contents Protection GPS PTP

    ATSC3.0 Broadcast Gateway PTP ≤ 30 Mbps Microwave (Wireless) IP Network (Wireline) 시그널링 인코더 PTP DSTP STLTP 재난경보 서버 PTP에 동기화된 DSTP/STLTP 모니터링 장치 GPS에 동기화된 STLTP/RF 모니터링 장치 RF MUX-IN 모니터링 데이터 수집 서버, 실시간 현황판 DSTP 분배망 스위치 STLTP 송신소 스위치 STLTP RF 송신소 또는 주조에 설치 네트워크 회선망에 설치 전국 UHD-SFN 통합 모니터링 시스템 적용 구간
  80. 전국 UHD-SFN 통합 모니터링 시스템: 원격모니터링 장치 본체 PTP에 동기화된

    DSTP/STLTP 모니터링 장치 GPS에 동기화된 STLTP/RF 모니터링 장치
  81. 전국 UHD-SFN 통합 모니터링 시스템: 원격모니터링 장치 Web-GUI PTP에 동기화된

    DSTP/STLTP 모니터링 장치 GPS에 동기화된 STLTP/RF 모니터링 장치
  82. 기계실 조종실 본사 UHD 주조 무등산 송신소 VPN망 광주총국 연주소

    송출센터 주조종실 M/W실 GPS신호 UHD 송신기 NTP서버 CLA3-SM1000N DB서버 웹서버 모니터링 PC (WEB) EUROTEK M/W STL신호 StreamWatch Lite EUROTEK M/W STL 신호 UHD RACK PTP서버 UHD RF 신호 UHD RF 신호 VPN 스위치 Control 신호 시각(GPS or PTP) 신호 STL 신호 UHD RF 신호 VPN 스위치 VPN 스위치 1TV 1TV 2TV 2TV 전국 UHD-SFN 통합 모니터링 시스템: 제어회선VPN을 통한 데이터 수집
  83. 전국 UHD-SFN 통합 모니터링 시스템: 실시간 현황판

  84. 전국 UHD-SFN 통합 모니터링 시스템: 실시간 계측값

  85. ATSC 3.0 직접수신 ATSC 3.0 & 5G 이동수신기 5G 통신망

    지상파 수신영상 5G 수신영상 지상파 수신영상 음영지역 끊김 (터널/지하) 5G 수신영상 끊김없는 시청 가능 (2) MobileDNS 기반 BC(ATSC 3.0)-BB(5G/WiFi) 자동채널 전환 (1) Closed Caption 기반 인공지능 AI 기반 아바타 수어 자 동 생성 (3) MMTP 기반 Seamless 지역맞춤형 스팟 광고 자동 절체 기 술 KBS1, MBC, 지역민방 태풍영향 권 시청자 태풍영향 권 외 시청자 시청시 각 Timelin e 코로 나19 행동 요령 이시 각 태풍 현황 태풍경보 9-2 MMS 재난전문채널 누구나, 언제 어디서나 시청할 수 있는 한국인의 재난 중심채널 직접수신(고정) 직접수신(이동) 5G/WiFi 수신 ATSC 3.0 송중계소 CDN서버 9-2 Mobile DNS ② BC-BB 자동채널전환 | KBS미디어기술연구소 자체개발 ATSC 3.0 Encoder MSW Master Switcher 3G- SDI HD- SDI STLTP UDP/I P ① 인공지능 AI 기반 아바타 수어 자동생성 | 2022년 국책과제 재난정보에 소외되는 시청자가 없도록, 어떤 단말기를 통해서 끊김 없는 시청이 가능하도록 신관B2층 9-2 MMS 주조 모바일 직접수신 제주실증 UHDTV 공적서비스 고도화 실종아동찾기 IBB서비스 고도화 재난정보 부가서비스 (3)지역맞춤형 스팟 송출기술 | KBS-SKT(Cast.era) MoU 협력 세계최초 ATSC 3.0 수신칩이 내장된 Sinclair MarkOne 스마트폰