Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
사실주의 베이컨
Search
Sunghyun Hwang
June 15, 2019
How-to & DIY
1
100
사실주의 베이컨
[4회차 콘샐러드]에서 발표한 [사실주의 베이컨] 발표 자료입니다.
Sunghyun Hwang
June 15, 2019
Tweet
Share
More Decks by Sunghyun Hwang
See All by Sunghyun Hwang
MongoDB in Banksalad
sunghyunzz
0
460
[ConSalad 05] from banksalad import python
sunghyunzz
0
180
from banksalad import python
sunghyunzz
0
810
Clean Architecture (in Android) Revised
sunghyunzz
1
1k
학습하는 조직과 Python: 뱅크샐러드 사례를 중심으로
sunghyunzz
2
2k
The Secrets of Cooperation
sunghyunzz
0
510
Pragmatic Python
sunghyunzz
1
170
Practical FP in Kotlin
sunghyunzz
4
1.2k
Akka (Actor) in Practice
sunghyunzz
0
500
Other Decks in How-to & DIY
See All in How-to & DIY
JAWS-UG/AWSコミュニティプログラムのご紹介 - JAWS-UG 佐賀
awsjcpm
2
200
「無理」を「コントロール」するスキル / Skills to Control "Muri"
hageyahhoo
5
3.7k
Goカードゲームを 作ってみた!
senoue
0
180
餃子コミュニティの活性化/TechGYOZA
nishiuma
2
230
Burnoutとの「対話」 〜 アジャイルコーチングを活用した、燃え尽き症候群を克服するスキル 〜 / Dialogue with Burnout by Using Agile Coaching Skills
hageyahhoo
0
650
スマートハウスの蓄電性能の効率化を実現してみた~電気自動車編~
runrunsan
0
380
評価のギャップから紐解く、「評価軸」と「ソフトスキル」の重要性
blajir
2
130
LLMはTRPGのGMができる(確信)
kgmkm
0
2.2k
すぐできる! 運送業でやってみた業務効率化3選
dochin2635
0
160
苦手の克服方法 / How to overcome weaknesses
toma_sm
0
320
SoracomUG-Ishikawa-1.pdf
yukima77
0
130
キャリア科目では教えてくれない、就活を生き抜く法則
logica0419
1
190
Featured
See All Featured
Designing for Performance
lara
610
70k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
630
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
60
エンジニアに許された特別な時間の終わり
watany
106
230k
Automating Front-end Workflow
addyosmani
1371
200k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Optimizing for Happiness
mojombo
379
71k
Why Our Code Smells
bkeepers
PRO
340
58k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
600
Transcript
ࢎप ߬ஶ ܻח যڌѱ ޖਸ ߓ Ѫੋо ടࢿഅ
None
ইח Ѫ ൨scientia potentia est ےदझ ߬ஶ, ~नӝҙ
оࢸ? 01 оࢸ Ѩૐ? 02 оࢸ ӝ? 03
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ࢎۈ લח 2. ࣗۄపझח ࢎۈ
3. ࣗۄపझח લח
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ࢎۈ લח 2. ࣗۄపझח ࢎۈ
3. ࣗۄపझח લח
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ࢎۈ લח 2. ࣗۄపझח ࢎۈ
3. ࣗۄపझח લח ഛ غա?
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ઁԈ ҙ೧ࠁפ ࢎۈٜ ࠗ࠙ લ؍ؘ
2. ࣗۄపझب ࢎۈפ ઃр લѷ
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ઁԈ ҙ೧ࠁפ ࢎۈٜ ࠗ࠙ લ؍ؘ
2. ࣗۄపझب ࢎۈפ ઃр લѷ Ѧ ॄݡਸ ࣻ ਸө?
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ࣗۄపझח લਸ Ѫ (оࢸ) 2.
ೠ 100֙ റী ղо ഛੋೡ Ѫ (Ѩૐ)
"ࣗۄపझח લח"ܳ ইח ߑߨٜ 1. ࣗۄపझח લਸ Ѫ (оࢸ) 2.
ೠ 100֙ റী ղо ഛੋೡ Ѫ (Ѩૐ)
None
Ѩૐ ੌ߈ੋ ഋకٜ 1. ஹੌ/పझ (٘о উ جইоਃ) 2. زܐ
ೖ٘ߔ (য ӒѤ ইצ Ѫ эؘਃ)
Ѩૐ ੌ߈ੋ ഋకٜ 1. ஹੌ/పझ (٘о উ جইоਃ) 2. زܐ
ೖ٘ߔ (য ӒѤ ইצ Ѫ эؘਃ)
Ѩૐ ੌ߈ੋ ഋకٜ 1. ஹੌ/పझ (٘о উ جইоਃ) 2. زܐ
ೖ٘ߔ (য ӒѤ ইצ Ѫ эؘਃ)
Ѩૐ ੌ߈ੋ ഋకٜ 1. ஹੌ/పझ (٘о উ جইоਃ) 2. زܐ
ೖ٘ߔ (য ӒѤ ইצ Ѫ эؘਃ)
ೖ٘ߔী ೠ ҙ ജ ೖ٘ߔ যח ѱ ইפۄ ղо ݅ٚ
৵ջ? оࢸ Ѩૐ ਃೠ Ѥ աפө
ೖ٘ߔী ೠ ҙ ജ ೖ٘ߔ যח ѱ ইפۄ ղо ݅ٚ
৵? оࢸ Ѩૐ ਃೠ Ѥ աפө
ೖ٘ߔী ೠ ҙ ജ ೖ٘ߔ যח ѱ ইפۄ ղо ݅ٚ
৵? оࢸ Ѩૐ ਃೠ Ѥ աפө
The only way to discover your strengths is through feedback
analysis. Whenever you make a key decision or take a key action, write down what you expect will happen. Peter Drucker, ~Managing Oneself
Nine or 12 months later, compare the actual results with
your expectations. I have been practicing this method for 15 to 20 years now, and every time I do it, I am surprised Peter Drucker, ~Managing Oneself
None
✅ оࢸ[Ѩૐ/ೖ٘ߔ] হݶ ण द হ
✅ оࢸ[Ѩૐ/ೖ٘ߔ] হݶ ण द হ
✅ оࢸ[Ѩૐ/ೖ٘ߔ] হݶ ण द হ
✍& var nrOfCornSalad = 4
( nr ޤભ? number۽ যঠ ഁтܻ ঋਸ Ѫ эইਃ
✍& var nrOfCornSalad = 4 ( nr ޤભ? number۽ যঠ
ഁтܻ ঋਸ Ѫ эইਃ "߸ࣻݺ ୭ೠ ಽয ॳ"
✍& var ExpectedHypertextTransferProtocolStatusCode = 201
* ߸ࣻݺ ցޖ ӡযࢲ ٘о ੜ ׀ী ٜযয় ঋইਃ
✍& Ӓۧ݅ ( ש ߸ࣻݺਸ ಽয ॄ׳ۄҊ ਃೞ࣑যਃ
( ח ੍ӝ જ ٘ܳ ࢿೞח ফӝܳ ೮؍ Ѥؘਃ
ೞաܳ ٜਵݶ ৌਸ উዬᬰᚌ ղо ഛࠁೠ [оࢸ] ਊغח ࢚ട/ߧਤо ৌ10
ೞաܳ ٜਵݶ ೞաܳ উ ղо ഛࠁೠ [оࢸ] ਊغח ࢚ട/ߧਤо ೞա
1. ܳ ঈೞӝ য۰ ߸ࣻݺਸ ೖೞ 2. ੍ӝ જ ٘о
જ ٘ 3. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ইఃఫо જ ইఃఫ 4. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ٘߬झо જ ٘߬झ
1. ܳ ঈೞӝ য۰ ߸ࣻݺਸ ೖೞ 2. ੍ӝ જ ٘о
જ ٘ 3. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ইఃఫо જ ইఃఫ 4. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ٘߬झо જ ٘߬झ
1. ܳ ঈೞӝ য۰ ߸ࣻݺਸ ೖೞ 2. ੍ӝ જ ٘о
જ ٘ 3. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ইఃఫо જ ইఃఫ 4. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ٘߬झо જ ٘߬झ
1. ܳ ঈೞӝ য۰ ߸ࣻݺਸ ೖೞ 2. ੍ӝ જ ٘о
જ ٘ 3. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ইఃఫо જ ইఃఫ 4. যڌѱ ٘ܳ ࢿೡ ݺഛೠ ٘߬झо જ ٘߬झ
1. ٘ ܻ࠭ܳ ߉ইঠ ࡈܻ ࢿೠ 2. ࢎۈٜ۽ࠗఠ ೖ٘ߔਸ ݆
߉ইঠ ࡈܻ ࢿೠ 3. ೖ٘ߔਸ ߉ইঠ ࡈܻ ࢿೠ
1. ٘ ܻ࠭ܳ ߉ইঠ ࡈܻ ࢿೠ 2. ࢎۈٜ۽ࠗఠ ೖ٘ߔਸ ݆
߉ইঠ ࡈܻ ࢿೠ 3. ೖ٘ߔਸ ߉ইঠ ࡈܻ ࢿೠ
1. ٘ ܻ࠭ܳ ߉ইঠ ࡈܻ ࢿೠ 2. ࢎۈٜ۽ࠗఠ ೖ٘ߔਸ ݆
߉ইঠ ࡈܻ ࢿೠ 3. ೖ٘ߔਸ ߉ইঠ ࡈܻ ࢿೠ
None
ࠛഛपೠ ࢚ടਸ ӓࠂೞח о જ ߑߨ ഛपೣਸ ݆ ഛࠁೞח Ѫ
✅
ࠛഛपೠ ࢚ടਸ ӓࠂೞח о જ ߑߨ ഛपೣਸ ݆ ഛࠁೞח Ѫ
✅
ࠛഛपೠ ࢚ടਸ ӓࠂೞח о જ ߑߨ оࢸ Ѩૐਸ ؊ ࡈܻ
ೞח Ѫ ✅
ࠛഛपೠ ࢚ടਸ ӓࠂೞח о જ ߑߨ ೖ٘ߔਸ ؊ ࡈܻ ח
Ѫ ✅
ࢎۈ() ݈ೞҊ ೮؍ ѱ ۠ ڷੌө? , ޙҗ ߸ਸ
ా೧ Ѩૐ೧ࠁ