Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Yuuto Imai

Avatar for Suurist Suurist
June 03, 2016

Yuuto Imai

Yuuto Imai

Avatar for Suurist

Suurist

June 03, 2016
Tweet

Other Decks in Science

Transcript

  1. ༨ஊ1 (NPV) key word : কདྷͷ100ສԁ < ࠓͷ100ສԁ NPV :=

    ¯ I + T X t=1 Ct (1 + r)t ɾNPV(Net Present Value) : ׂҾݱࡏՁ஋ I : ॳظ౤ࢿࢿຊɺCt : ୈtظͷcash flow r : ׂҾ཰(ར཰)ɺT : ຬظ NPV>0ͳΒ͹ɺͦͷϓϩδΣΫτ͸࣮ߦ͢΂͖ ໰୊఺ɿׂҾ཰͸Ͳ͏΍ܾͬͯΊΔʁ
  2. ϙʔτϑΥϦΦ key word : ཛ͸ҰͭͷόεέοτʹೖΕΔͳ Mean - Variance (MV) approach

    Markowitz (1927-) Miller, Sharpeͱڞʹ1990೥ϊʔϕϧܦࡁֶ৆ 1952೥ͷֶҐ࿦จʮϙʔτϑΥϦΦબ୒࿦ʯͰఏএ ౤ࢿՈ͸ɺ༩͑ΒΕͨฏۉऩӹΛ༗͢Δ͢΂ͯͷϙʔτ ϑΥϦΦͷதͰ෼ࢄ͕࠷খͱͳΔϙʔτϑΥϦΦΛ࡞੒ ͠อ༗͢΂͖Ͱ͋Δɹ͜ͷࡍɺ෼ࢄΛʮϦεΫʯͱΈΔ
  3. ༨ஊ2 (Market Indexes) ֤ࠃͷࢢ৔Ͱܭࢉ͞Ε͍ͯΔ֤छͷࢢ৔ࢦඪ Nikkei225(೔ܦฏۉ)…౦ূ1෦ͷ͏ͪɺྲྀಈੑͱηΫλʔΛצ Ҋͨ͠255໏ฑͷ୯७ฏۉࢦ਺ TOPIX…౦ূ̍෦શ໏ฑͷ࣌Ձ૯ֹՃॏฏۉɻ68. 1. 4Λ100 NY

    Daw…ओཁۀछͷ୅දతͳ30໏ฑͰߏ੒͞ΕΔגՁͷ୯७ ฏۉࢦ਺ DAX…ϑϥϯΫϑϧτূ݊औҾॴ্৔ͷυΠπاۀͷ͏ͪ30 ໏ฑͷ࣌Ձ૯ֹՃॏฏۉɻ87 . 12. 31Λ1000
  4. remark:(1)্ࣜΛຬͨ͞ͳ͍f͸ແࡋఆͰ͸ͳ͍ (2)optionՁ֨ͷಋग़͕Մೳ Black-Scholes-Merton equation ೚ҙͷΦϓγϣϯͷՁ֨f(S,t)͸ҎԼͷํఔࣜΛຬͨ͢ @f @t + @f @S

    rS + 1 2 @2f @S2 2S2 = rf European call optionͷ৔߹ʹ͸໌ࣔతͳղ͕ಘΒΕΔɿ C(S, t) = SN(d1) Ke r(T t)N(d2) d1 = log( S/K ) + ( r + 2/ 2)( T t ) p T t d2 = d1 p T t N͸ඪ४ྦྷੵਖ਼ن෼෍
  5. Wall streetͰ࠷΋༗໊ͳ਺ֶऀ ͓ ஌ Β ͤ ɹຊֶ໊༪ڭतɼҏ౻ਗ਼ࡾઌੜʢཧֶ ෦਺ֶՊɼ౰࣌ʣ͸  ೥

     ݄  ೔ʹ  ࡀͰ੦ڈ͞Ε·ͨ͠ɻઌੜ͸  ೥ʹ໊ݹ԰େֶཧֶ෦਺ֶՊΛଔ ۀ໊͠ݹ԰େֶཧֶ෦ॿखɼߨࢣΛܦ ͯɼ ೥ʹຊֶཧֶ෦ߨࢣʹண೚͞ Ε  ೥ʹఆ೥ୀ׭͞ΕΔ·Ͱ਺ֶڭ ࣨʹ͓͍ͯղੳֶͷڭҭݚڀʹ͝ਚྗ͞ Ε·ͨ͠ɻ ɹઌੜ͸ɼ֦ࢄํఔࣜͷڥք஋໰୊ɼφ ϏΟΤɾετʔΫεํఔࣜͷॳظ஋໰୊ ͳͲͷݹయղͷଘࡏɾҰҙੑͷূ໌ɼପ ԁܕภඍ෼ํఔࣜͷཧ૝ڥքͷݚڀͳͲ ภඍ෼ํఔࣜʹؔͯ͠ݚڀۀ੷Λڍ͛Β Ε·ͨ͠ɻڭҭͰ͸ɼઐ໳Ͱ͸ͳ͍֬཰ աఔ࿦ͷߨٛ΍ηϛφʔ΋୲౰͞ΕΔͳ Ͳɼղੳֶશൠʹ͓͚Δݚڀऀͷҭ੒ʹ ਚྗ͞Ε·ͨ͠ɻஶॻ΋ଟ͘ɼ ೥ ʹग़൛͞Εͨʮϧϕʔάੵ෼ೖ໳ʯ͸ܦ ࡁֶΛؚΉ͞·͟·ͳՊֶ෼໺ͷݚڀऀ ΍ֶੜʹࠓͳ͓ಡ·Εଓ͚ΒΕ͍ͯ·͢ɻ ɹઌੜ͸Ժ΍͔ͳํͰ͕ͨ͠ؤݻͳҰ໘ ΋͋ΓɼֶੜେձͷͨΊͷߨٛதࢭͷཁ ੥ֶ͕ੜ࣏ࣗձ͔Β͋ͬͨ࣌ɼ ʮͦͷ೔ ͷߨٛΛௌ͔ͳͯ͘΋ࢧো͕ͳ͍Α͏ʹɼ ҧ͏಺༰ͷߨٛΛҰճ͚ͩߦ͏ʯͱߨٛ ͸தࢭ͠ͳ͔ͬͨ͜ͱ͕͋Γ·ͨ͠ɻ· ͨɼීஈ͸ֶੜʹਅ໘໨ͳҰ໘͔͠ݟͤ ͳ͍ઌੜͰ͕ͨ͠ɼ࠙਌ձͰ౰࣌ͷ੓࣏ ՈΛൽ೑ͬͨࣗ࡞ͷସ͑ՎΛ൸࿐͞ΕΔ ೇԬɹ੒༤ʢ਺ཧՊֶݚڀՊɹڭतʣ ҏ౻ਗ਼ࡾઌੜͷ͝੦ڈΛౣΉ ҏ౻ਗ਼ࡾઌੜͷ͝੦ڈΛౣΉ ނɾҏ౻ਗ਼ࡾઌੜ ͜ͱ΋͋Γ·ͨ͠ɻ ɹֶੜࢥ͍Ͱڭҭ೤৺Ͱ͋ͬͨҏ౻ઌੜ ͷ້͝෱Λ৺ΑΓ͓فΓ͍ͨ͠·͢ɻ {fi (t)|t ∈ [0, ∞)}, i = 0, · · · , d Λ 2 ৐Մੵ෼ͳద߹ͨ͠࿈ଓ֬཰աఔɺx ∈ R ͱ͢Δɻ ·ͨɺ֬཰աఔΛ X(t) := x + d i=1 t 0 fi (s)dBi (s) + t 0 f0 (s)ds ͰఆΊΔɻࠓɺF : R → R ͸ 2 ճඍ෼Մೳͳؔ਺Ͱɺͦͷඍ෼ F′, F′′ ͸༗ք͔ͭ࿈ଓͰ ͋Δͱ͢Δɻ͜ͷ࣌ɺ͕࣍ࣜ੒ཱ͢Δ: F(X(t)) − F(x) = d i=1 t 0 (F′(X(s))fi (s))dBi (s) + t 0 F′(X(s))f0 (s)ds + 1 2 d i=1 t 0 F′′(X(s))fi (s)2ds ҏ౻ͷLemma
  6. LTCMͷࣦഊ ݩιϩϞϯϒϥβʔζͷ࠴ݖτϨʔμʔɺϝϦ΢Σβʔ ͕ൃىਓͱͳΓઃཱ(94-00) M. γϣʔϧζ΍R. ϚʔτϯΒ͕ࢀը,12.5ԯUS$ͷ౰ॳࢿ ۚ γϯϓϨοΫε๏ͳͲΛ༻͍ͨ޿ٛͷࡋఆऔҾΛத৺ͱ ͨۚ͠༥޻ֶతख๏ ౰ॳͷ̐೥ؒ͸ฏۉ೥཰40%Λ௒͑ΔϦλʔϯ

    ΞδΞ௨՟ةػɺϩγΞةػʹΑΓ࣮࣭తʹഁ୼ ϩγΞͳͲͷ৽ڵࢢ৔Ͱ4.3ԯ$ ૬৔ͷ্Լʹ௚઀Ṍ͚ͨϙδγϣϯͰ3.71ԯ$ ϖΞτϨʔυͰ3.06ԯ$ גࣜࢦ਺ɾϘϥςΟϦςΟɾτϨʔυͰ13.12ԯ$ ࠴݊ࡋఆऔҾͷ16.28ԯ$(LTCMͷίΞऔҾʣ ܦࡁةػϦεΫͷݟੵ΋Γʮɹɹɹɹʯͩͬͨͱ͔(98.8Ͱ˛21ԯ$) 10 24
  7. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) ੥ٻݖͷՁ֨෇͚͓Αͼϔοδͱ͸ Ұͭͷ҆શࢿ࢈ͱҰͭͷג͔ࣜΒ੒Δۚ༥ࢢ৔Λߟ͑Δɽ

    ݱ࣌఺Λ 0ɼຬظΛ T ͱ͢Δ࿈ଓ࣌ؒϞσϧΛߟ͑Δɽ ؆୯ͷͨΊɼۚར͸ߟ͑ͳ͍΋ͷͱ͢Δɽͭ·Γɼ҆શࢿ࢈ͷՁ֨͸ৗʹ 1 ͱ ͢Δɽ ͞ΒʹɼגࣜͷՁ֨͸ηϛϚϧνϯήʔϧ St Ͱ༩͑ΒΕΔ΋ͷͱ͢Δɽ ͜ͷͱ͖ɼ੥ٻݖ X Λ࣌ࠁ 0 Ͱച٫͠Α͏ͱ͢Δ౤ࢿՈ͸ɼ ͍͘ΒͰ X Λച٫͠ɼͲͷΑ͏ʹͯ͠কདྷͷϥϯμϜͳࢧ෷͍ʹඋ͑Δ΂͖͔?
  8. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) ੥ٻݖͷՁ֨෇͚͓Αͼϔοδͱ͸ (cont’d)

    ΋͠ɼ X = c + T 0 ϑt dSt (1) Λຬͨ͢ c ∈ R ͱՄ༧ଌաఔ ϑ ͕ݟ͔ͭΕ͹ɼͦΕͧΕ͕ X ͷՁ֨ͱϔοδઓ ུʹͳΔɽ . ஫ҙ . . . . . . . . . . . 1 ۚརΛߟྀ͢Δ৔߹ɼ(1) ͸΋͏গ͠ෳࡶʹͳΔɽ ͜Εʹؔͯ͠͸ޙఔগ͚ͩ͠ݴٴ͢Δɽ . . . 2 S ͕ L´ evy աఔͷΑ͏ʹ jump ΛؚΉ৔߹͸ɼ(1) ͷΑ͏ͳදݱΛຬͨ͢ (c, ϑ) ͸ଘࡏ͠ͳ͍ɽ ͜ͷΑ͏ͳඇ׬උࢢ৔Ϟσϧͷ৔߹͸৭ʑͱ஫ҙͱ޻෉͕ඞཁͰ͋Δɽ Ұͭ͸ɼϚϧνϯήʔϧଌ౓͕ෳ਺ଘࡏ͢Δ͜ͱͰ͋Δɽ ΋͏Ұͭ͸ɼ࠷దϔοδઓུΛͲ͏ଊ͑Δ͔ͱ͍͏໰୊Ͱ͋Δɽ
  9. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Black-Scholes Ϟσϧͷ঺հ

    Black-Scholes Ϟσϧͱ͸ Ұͭͷ҆શࢿ࢈ͱҰͭͷג͔ࣜΒ੒Δۚ༥ࢢ৔Λߟ͑Δɽ ݱ࣌఺Λ 0ɼຬظΛ T ͱ͢Δ࿈ଓ࣌ؒϞσϧΛߟ͑Δɽ ҆શࢿ࢈ͷՁ֨Λ࣌ࠁ 0 Ͱ 1 ԁΛۜߦʹ༬͚ͨ࣌ͷ࢒ߴͱߟ͑Δɽ ͭ·Γɼۜߦ༬ۚͷۚརΛ r(≥ 0) ͱ͢Δ ࣌ࠁ t ʹ͓͚Δ҆શࢿ࢈ͷՁ֨͸ ert ͱͳΔɽ Ұํɼ࣌ࠁ t ʹ͓͚ΔגՁ St ͸ɼ࣍ͷ֬཰ඍ෼ํఔࣜͷղ: dSt = µSt dt + σSt dWt , S0 > 0. ͜͜ͰɼS0 > 0, µ ∈ R, σ > 0, W ͸ϒϥ΢ϯӡಈͱ͢Δɽ St = S0 exp µ − 1 2 σ2 t + σWt ͱ΋ॻ͚Δɽ
  10. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Black-Scholes Ϟσϧͷ঺հ

    Ձ֨ͱϔοδ ຬظ࣌ࠁ T Ͱͷࢧ෷͍͕ f(ST ) Ͱ͋Δ੥ٻݖΛߟ͑Δɽ ྫ͑͹ɼf(x) = (x − K)+ ͳΒ͹ίʔϧΦϓγϣϯͰ͋Δɽ ͜ͷ੥ٻݖʹର͢ΔՁ֨Λܭࢉ͢ΔͨΊʹɼϦεΫதཱଌ౓ (ಉ஋Ϛϧνϯήʔ ϧଌ౓) Λಋೖ͢Δɽ ͦΕ͸ɼҎԼͰఆٛ͞ΕΔ֬཰ଌ౓ Q Ͱ͋Δ: dQ dP = exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ − 1 2 µ − r σ 2 T − µ − r σ WT ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ Q ͷԼͰɼׂҾגՁաఔ e−rt St ͸ Q-ϚϧνϯήʔϧʹͳΔɽ ੥ٻݖ f(ST ) ͷ࣌ࠁ t ʹ͓͚ΔՁ֨ Ct ͸ Ct = e−r(T−t)EQ [f(ST )|Ft ] Ͱ༩͑ΒΕΔɽ
  11. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Black-Scholes Ϟσϧͷ঺հ

    Ձ֨ͱϔοδ (cont’d) ͜ͷ੥ٻݖΛ࣌ࠁ 0 Ͱച٫ͨ͠౤ࢿՈͷϔοδઓུͰ͋ΔՄ༧ଌաఔ ϑ ͸ e−rT f(ST ) = C0 + T 0 ϑt d(e−rt St ) Λຬͨ͢ɽ ͜ͷ ϑ ͸σϧλϔοδͱݺ͹ΕΔ΋ͷͰ͋Γɼ ϑt = ∂Ct ∂St Ͱ༩͑ΒΕΔɽ
  12. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Volatility ͷਪఆ

    Implied volatility ຬظ Tɼߦ࢖Ձ֨ K ͷίʔϧΦϓγϣϯʹର͢Δ Black-Scholes ެࣜΛɼ volatility σ ͷؔ਺ͱݟͳͯ͠ C(σ; T, K) ͱॻ͘ɽ Implied volatility σIV ͸ɼ࣮ࡍʹ؍ଌ͞ΕͨՁ֨ ¯ C0 Λ༻͍ͯ ¯ C0 = C(σIV ; T, K) Ͱ༩͑ΒΕΔɽ σIV ͸ ( ¯ C0 ΋)T ͱ K ͷؔ਺Ͱ͋Δ͜ͱʹ஫ҙɽ ΋͠ Black-Scholes Ϟσϧ͕ຊ౰ʹਖ਼͍͠ͷͰ͋Ε͹ σIV ͸ఆ਺ʹͳΔ͸ͣͰ ͋Δɽ
  13. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Volatility ͷਪఆ

    0.4 0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.22 0.24 0.26 0.28 0.3 0.32 Time to maturity Average profile of implied volatility surface Moneyness Implied volatility FIGURE 1.6: Implied volatilities of DAX index options, 2001.
  14. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) Volatility ͷਪఆ

    0 0.5 1 1.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 Time to maturity Average profile of implied volatility surface Moneyness Implied volatility 0 50 100 150 200 250 300 350 400 450 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 FIGURE 1.7: Left: The implied volatility surface for S&P 500 options. Right: At-the-money skew ∂Σ ∂K (K = S, T) as a function of the maturity T (in days).
  15. . . . . . . ਺ཧϑΝΠφϯεͰ͸ԿΛ࿦͡Δͷ͔?(Black-Scholes ϞσϧΛத৺ʹ) ਺ཧϑΝΠφϯεʹ͓͚ΔϞσϧͷ֦ு ਺ཧϑΝΠφϯεʹ͓͚ΔϞσϧͷ֦ு

    ࣮σʔλΛ༻͍ͨ෼ੳ͔Βܦݧతʹ஌ΒΕ͍ͯΔגՁաఔͷಛ௃Λ stylized facts ͱ͍͏ɽ Volatility smile ΍ volatility skew ͸ͦ͏͍ͬͨ΋ͷͷҰͭͰ͋Δɽ ͜͏ͨ͠ stylized facts ͷଟ͘͸ɼBlack-Scholes ϞσϧͰ͸આ໌Ͱ͖ͳ͍ɽ ͦ͜Ͱɼదٓ Black-Scholes ϞσϧΛ֦ுͯ͠ɼΑΓݱ࣮తͱࢥΘΕΔϞσϧ ͷߏங͕ߦΘΕΔɽ ͜ͷ֦ுʹ͸༷ʑͳ΋ͷ͕͋Δ͕ɼେ͖ͳྲྀΕͱͯ͠ . . . 1 Stochastic volatility model . . . 2 Jump ΛؚΜͩϞσϧ ͷ 2 ͕ͭڍ͛ΒΕΔɽ Ҏޙɼ͜͜Ͱ͸ओʹޙऀʹয఺Λ͋ͯΔɽ
  16. Numerical Approaches to Finance Monte Carlo ๏ quasi-Monde Carlo ๏

    Fourier Transform Laplace Transform ࠷దԽ๏ (Nelder-Mead, Levenberg-Marquardt, SQP, · · · ) multinomial tree/lattice Explicit/Implicit Finite Difference Scheme Finite Elements Wavelet-Galerkin ͳͲͳͲ
  17. ࿦จ Numerical analysis on local risk-minimization for exponential L´ evy

    models (1) زԿ L´ evy Ϟσϧʹରͯ͠ɺCall option ͷ LRM Λ਺஋ܭࢉ Մೳͳදݱͱͯ͠ಋग़ (2) Merton model, Variance Gamma model Λྫʹ਺஋ܭࢉΛ ࣮ߦ Comparison of Local Risk Minimization and Delta Hedging for Exponential L´ evy Models (1) ্هͷ࿦จͷ࿮૊ΈͰ Delta hedge Λఆٛ (2) Merton model, VG model Λྫʹ (2-1) |LRM − ∆P∗ | ͷෆ౳ࣜධՁΛ༩͑ (2-2) |LRM − ∆P∗ | ʹ͍ͭͯ਺஋ܭࢉΛ࣮ߦ
  18. ༻͍ͨ਺஋ܭࢉख๏ Carr-Madan method ߴ଎ Fourier ม׵Λ༻͍ͯ call option ͷՁ֨Λಋग़͢Δख๏ model

    → Merton models, variance Gamma models VG Ͱ͸ࢢ৔σʔλ͔ΒϞσϧύϥϝʔλΛਪఆ ύϥϝʔλਪఆํ๏ → Ϟʔϝϯτ๏ٴͼ Levenberg-Marquardt ๏ ࢢ৔σʔλ → Nikkei225 2014 ೥ 3 ݄ऴ஋ (೔࣍)
  19. લఏ ඇ׬උࢢ৔ʹ͓͚Δ৚݅෇͖੥ٻݖͷՁ֨෇͚ٴͼ࠷దϔοδઓུ ɾ׬උࢢ৔ →(1) ׬શෳ੡ઓུ͕ଘࡏ (2) औҾඅ༻ͳͲͷຎࡲ͕ଘ ࡏ͠ͳ͍ ແࡋఆ৚݅Λຬͨ͢׬උࢢ৔Ͱ͸ɺಉ஋Ϛϧνϯήʔϧଌ౓ (∗)

    ͕ ͨͩҰͭ ଘࡏͦ͠ͷԼͰͷ৚݅෇͖੥ٻݖͷظ଴஋͕Ձ֨Λ༩ ͑Δ ɾඇ׬උࢢ৔Ͱ͸ɺෳ੡ઓུ͕ଘࡏͤͣɺಉ஋Ϛϧνϯήʔϧଌ ౓͕ ແ਺ʹ ଘࡏ͢ΔͨΊɺແࡋఆ৚݅ԼͰͷՁ֨͸Ұҙʹ͸ఆ· Βͳ͍ → ԿΒ͔ͷҙຯͰʮ࠷దʯͳϔοδઓུΛߟ͑ɺͦͷॳظඅ༻Λ Ձ֨ͱΈͳ͢ (∗ ࢿ࢈աఔΛϚϧνϯήʔϧʹ͢Δଌ౓)
  20. LRM (General case) ξt ͱ ηtɿͦΕͧΕגͱ҆શࢿ࢈ͷ࣌ࠁ t ʹ͓͚Δอ༗ྔ ϖΞ ϕ

    := (ξt, ηt ) ΛઓུͱݺͿ ౤ࢿՈͷ෋ (རಘ)ɿVt = ηt + ξt St ͜ͷ࣌ɺίετաఔ Ct (ϕ) ͸ Ct (ϕ) = Vt (ϕ) − t 0 ξs dSs Ͱ༩͑ΒΕΔ ϦεΫաఔ Rt (ϕ) ΛҎԼͰఆٛ͢Δɿ Rt (ϕ) := E (CT (ϕ) − Ct (ϕ))2 Ft ϕ ͕ risk-minimization Ͱ͋Δͱ͸ɺ͋ΒΏΔઓུͷதͰͦͷϦεΫ աఔ͕࠷খʹͳΔ΋ͷΛݴ͏ɻͭ·Γɺ೚ҙͷෳ੡ઓུ ϕ ʹରͯ͠ Rt (ϕ) ≤ Rt (ϕ) P-a.s. for every t ∈ [0, T] Λຬͨ͢ઓུͷ͜ͱͰ͋Δ
  21. LRM (General case) Ҏ্͕ risk-minimization ͷఆٛͰ͋Δ͕ɺࢿ࢈Ձ֨աఔ St ͕ semi-martingale Ͱ͋Δ৔߹ʹ͸

    risk-minimization ͕ ଘࡏ͢Δͱ͸ݶΒͳ͍ ͦ͜ͰɺSchweizer ͸ఆٛΛվྑ͠ semi-martingale ͷ৔߹Ͱ΋ར ༻Մೳͳ local risk-minimizing ͷߟ͑ํΛఏএͨ͠ ͔͜͠͠ͷ࿦จͷఆٛ͸ۃΊͯෳࡶͰ͋ΔͨΊɺ M. Schweizer (2008) Local Risk-Minimization for Multi-dimensional Assets and Payment Streams, Banach Center Publications 83, 213–229. ͷ Theorem 1.6 Λ LRM ͷఆٛͱΈͳ͢ (cf. ࣍ͷεϥΠυ) ͜ͷ Theorem ͸ɺLRM ͷඞཁे෼৚݅Λ༩͑Δ΋ͷͰ͋Δ:
  22. LRM (General case) ఆٛ (LRM by Schweizer(2008)) 1 ΘS ͸ɼҎԼͷ৚݅Λຬͨ͢

    R-஋Մ༧ଌաఔ ξ ͷू߹ͱ͢Δ: E T 0 ξ2 t d⟨M⟩t + ( T 0 |ξt dAt |)2 < ∞. 2 ξ ∈ ΘS ͱద߹աఔ η ͷ૊ ϕ = (ξ, η) ͕ L2-ઓུ Ͱ͋Δͱ͸ɼ V(ϕ) := ξS + η ͕ӈ࿈ଓաఔͰ͋Γɼ೚ҙͷ t ∈ [0, T] ʹର͠ ͯ E[V2 t (ϕ)] < ∞ Ͱ͋Δ࣌ʹݴ͏ɽ 3 F ∈ L2(P) ʹରͯ͠, ֬཰աఔ CF(ϕ) Λ CF t (ϕ) := F1{t=T} + Vt (ϕ) − t 0 ξs dSs ʹΑΓఆٛ͠ɼϕ = (ξ, η) ͷ F ʹର͢ΔίετաఔͱݺͿ. 4 L2-ઓུ ϕ ͕ F ʹର͢Δ LRM Ͱ͋Δͱ͸ɼVT (ϕ) = 0 Ͱ͋Γɼ CF(ϕ) ͕ M ͱ௚ަ͢Δ martingaleɼͭ·Γɼ[CF(ϕ), M] ͕Ұ ༷Մੵ෼ martingale Ͱ͋Δͱ͖ʹݴ͏ɽ
  23. Fast Fourier Transform FFT : ࣍ͷܗͰ༩͑ΒΕͨ཭ࢄ Fourier ม׵Λߴ଎ʹܭࢉ͢Δख๏ (Cooley-Tukey, 1965)

    F(l) = N−1 j=0 e−i2π N jlxj (l = 0, · · · , N − 1, where {xj }j=0,··· ,N−1 ∈ R) N ͸ 2 ͷႈ৐ ܭࢉίετɿ ཭ࢄ Fourier ม׵: O(N2) FFT: O(N log 2 N)
  24. Carr–Madan method Carr-Madan method: S ͕ P-martingale ͷͱ͖ɺE[(ST − K)+]

    Λߴ ଎ʹܭࢉ͢Δख๏. (Carr-Madan, 1999) k := log K, C(k) := E[(ST − ek)+] ͱ͢Δͱɺ C(k) = 1 π ∞ 0 e−i(v−iα)k φ(v − iα − i) i(v − iα)(i(v − iα) + 1) dv α > 0, φ: LT (= log ST ) ͷ ಛੑؔ਺ NOTE α ʹ͸ґΒͳ͍.
  25. Carr–Madan method ୆ܗଇͱ Simpson ଇΛ༻͍ͯ C(k) ≈ e−αk π N−1

    j=0 e−i2π N jleiπjψ(ηj − iα) η 3 (3 + (−1)j+1 − δj ), N : ֨ࢠ఺ͷ਺, η > 0 : ֨ࢠ఺ؒڑ཭, l := k + π η Nη 2π . ·ͨɺψ(z) := φ(z−i) iz(iz+1) ੵ෼۠ؒ −→ [0, Nη]. N ͱ η ͸ɺ࣍ࣜΛຬͨ͢Α͏ʹ্ख͘બͿ: 1 π ∞ Nη e−i(v−iα)kψ(v − iα)dv < ε ͜͜Ͱɺε > 0 ͸ڐ༰ޡࠩ.
  26. ઃఆ S → exponential L´ evy process St := S0

    exp µt + σWt + R0 xN([0, t], dx) , t ∈ [0, T] ͜͜Ͱɺ S0 > 0, µ ∈ R, σ > 0, R0 := R \ {0}. N ; Poisson random measure, N ; compensated measure of N id est N(dt, dx) := N(dt, dx) − ν(dx)dt. ͜͜Ͱ ν ͸ L´ evy measure ҰൠੑΛࣦΘͣʹɺ S0 = 1 ͱͯ͠Α͍. S ͸࣍ͷ SDE ͷղͰ΋͋Δ: dSt = St− µSdt + σdWt + R0 (ex − 1)N(dt, dx) ͜͜Ͱɺ µS := µ + σ2 2 + R0 (ex − 1 − x)ν(dx). ∀t ∈ [0, T] ʹ͍ͭͯ Lt := log St ͱॻ͘ͱ, L ͸ L´ evy process.
  27. ઃఆ ͜͜Ͱ͸ɺMinimal Martingale Measure P∗ Λ࣍Ͱ༩͑Δ: dP∗ dP = exp

    − ξWT − ξ2 2 T + R0 log(1 − θx )N([0, T], dx) + T R0 θxν(dx) , ͜͜Ͱɺξ := µSσ σ2+ R0 (ex−1)2ν(dx) , θx := µS(ex−1) σ2+ R0 (ex−1)2ν(dx) (x ∈ R0 ). Lt ͸ɺ࣍ͷΑ͏ʹॻ͖׵͑ΒΕΔ: Lt = µ∗t + σWP∗ t + R0 xNP∗ ([0, t], dx), ͜͜Ͱɺ µ∗ := −σ2 2 + R0 (x − ex + 1)(1 − θx )ν(dx). Note L ͸ɺP∗ ͷԼͰ΋ L´ evy process. L´ evy ଌ౓͸ ∗
  28. ઃఆ Ծఆ 1 R0 x2ν(dx) < ∞; R0 (ex −

    1)nν(dx) < ∞ for n = 2, 4. ⇒ L´ evy process L ͸ L2 Ͱ༗ք µS, ξ, θx ͸ well-defined R0 (ex − 1)nν(dx) < ∞ for n = 1, 3 2 0 ≥ µS > −σ2 − R0 (ex − 1)2ν(dx). ⇒ θx < 1 for any x ∈ R0
  29. ઃఆ LRMt := ξ(ST−K)+ t , I1 := EP∗ [1{ST>K}

    ST |Ft− ], I2 := R0 EP∗ [(ST ex − K)+ − (ST − K)+|Ft− ](ex − 1)ν(dx). ໋୊ A representation of LRM for call option (ST − K)+ ∀K > 0, ∀t ∈ [0, T] ʹରͯ͠ LRMt = σ2I1 + I2 St− σ2 + R0 (ex − 1)2ν(dx) . I , I ͷ۩ମతͳੵ෼දࣔʹ͍ͭͯ͸ޙ΄Ͳɾ ɾ ɾ
  30. ੵ෼දࣔ Proposition 2 (Tankov, 2010) Λ༻͍ͯɺI1 (:= EP∗ [1{ST>K} ST

    |Ft− ]) ͷ ੵ෼ද͕ࣔٻ·Δ. I1 ͷੵ෼දࣔ φT−t (z) := EP∗ [eizLT−t ], ∀K > 0 ʹରͯ͠, EP∗ [1{ST>K} · ST |Ft− ] = 1 π ∞ 0 K−iv−α+1 α − 1 + iv φT−t (v − iα)Sα+iv t− dv. (∀t ∈ [0, T], ∀α ∈ (1, 2], z ∈ C) ͭ·Γɺk := log(K), ψ1 (z) := φT−t(z)Siz t− iz−1 ͱ͓͚͹ɺ I1 = EP∗ [1{ST>K} · ST |Ft− ] = ek π ∞ 0 e−i(v−iα)kψ1 (v − iα)dv. ⇒ FFT ͰܭࢉͰ͖Δ
  31. ੵ෼දࣔ I2 (:= R0 EP∗ [(ST ex − K)+ −

    (ST − K)+|Ft− ](ex − 1)ν(dx)) ΋ಉ༷ EP∗ [(ST − K)+|Ft− ] ͷੵ෼දࣔ ∀K > 0 ʹରͯ͠, EP∗ [(ST − K)+|Ft− ] = 1 π ∞ 0 K−iv−α+1 φT−t (v − iα)Sα+iv t− (α − 1 + iv)(α + iv) dv, for any t ∈ [0, T] and any α ∈ (1, 2]. ψ2 (z) := φT−t(z)Siz t− (iz−1)iz , ζ := v − iα ͱ͓͚͹, EP∗ [(ST − K)+|Ft− ] = 1 π ∞ 0 K−iζ+1ψ2 (ζ)dv =: f(K). ⇒ f(K) ͸ FFT ͰܭࢉͰ͖Δ
  32. I2 = R0 EP∗ [(ST ex − K)+ − (ST

    − K)+|Ft− ](ex − 1)ν(dx) = R0 exf(e−xK) − f(K) (ex − 1)ν(dx) = R0 ex π ∞ 0 (Ke−x)−iζ+1ψ2 (ζ)dv − 1 π ∞ 0 K−iζ+1ψ2 (ζ)dv (ex − 1)ν(dx) = R0 1 π ∞ 0 (eiζx − 1)K−iζ+1ψ2 (ζ)dv (ex − 1)ν(dx) = 1 π ∞ 0 K−iζ+1 R0 (eiζx − 1)(ex − 1)ν(dx)ψ2 (ζ)dv, (1) Remark ҎԼɺα ∈ (1, 2] Λ೚ҙͷఆ਺ͱͯ͠ݻఆ͢Δ ·ͨɺζ Λ v ͷؔ਺ͱͯ͠ΈΔ : ζ = v − iα
  33. Merton models Black–Scholes model ʹɺͦͷ··δϟϯϓΛՃͨ୯७ͳϞσϧΛ ߟ͑Δ σ > 0 ͱͯ͠ɺ

    ν(dx) = γ √ 2πδ exp − (x − m)2 2δ2 dx. (ν = ν[γ, m, δ]) ͜ͷ࣌ɺSt Λ Merton jump diffusion ͱݺͿ ͜Ε͸ Merton(1976) Ͱఏএ͞Εͨ΋ͷͰ͋Γɺͦͷ࿦จͷதͰ͸ ΦϓγϣϯͷՁ֨෇͚΍ϔοδʹ͍ͭͯ΋ٞ࿦͞Ε͍ͯΔ Merton model ʹ͓͍ͯ St ͸ St = S0 exp{µt + σWt + Jt } Ͱ༩͑ΒΕɺJt ͸ jump part Ͱ͋Δ
  34. Merton models ν Λ MMMɺͭ·Γ P∗ ʹม׵ͨ࣌͠ͷ νP∗ ͸࣍ͷΑ͏ʹͳΔ ໋୊

    νP∗ (dx) ʹ͍ͭͯ νP∗ (dx) =ν[(1 + h)γ, m, δ2](dx) + ν −hγ exp 2m + δ2 2 , m + δ2, δ2 (dx) ͜͜Ͱɺ h = µS σ2 + R0 (ex − 1)2ν(dx) . ν(dx)= γ √ 2πδ exp −(x−m)2 2δ2 dx. (ν=ν[γ,m,δ])
  35. Merton models Ծఆ (ຬͨ͢΂͖৚݅) Ϟσϧύϥϝʔλʔ͸ҎԼͷ৚݅Λຬͨ͞ͳ͚Ε͹ͳΒͳ͍ɿ m ∈ R , δ

    > 0 γ > 0 , 0 ≥ µ + σ2 2 + γ exp m + δ2 2 − 1 − m , µ + 3σ2 2 +γ exp(2m + 2δ2) − exp m + δ2 2 − m > 0 .
  36. Merton models φT−t (z) := EP∗ [eizLT−t ] ʹ͍ͭͯ z

    ∈ C,t ∈ [0, T] ʹରͯ͠, φT−t (z) = exp (T − t) izµ∗ − σ2z2 2 + R0 (eizx − 1 − izx)νP∗ (dx) = exp (T − t) izµ∗ − σ2z2 2 + (1 + h)γ(eimz−z2 δ 2 2 − 1 − imz) − hγe2m+δ 2 2 [ei(m+δ2)z− z2 δ 2 2 − 1 − iz(m + δ2)] .
  37. Merton models ˜ ψ(z) := ψ2 (z) exp −δ2 2

    z2 , ˜ f(K) := 1 π ∞ 0 K−iζ+1 ˜ ψ(ζ)dv. ˜ f ΋ f ͱಉ༷ʹ FFT ͰܭࢉՄೳ. Expression of I2 ͷੵ෼දࣔ ೚ҙͷ t ∈ [0, T] ʹ͍ͭͯɺI2 ͸࣍ͷΑ͏ʹॻ͚Δ: R0 EP∗ [(ST ex − K)+ − (ST − K)+|Ft− ](ex − 1)ν(dx) = γe2m+ 3 2 δ2 ˜ f(Ke−m−δ2 ) − γem ˜ f(Ke−m) + γ(1 − em+ δ 2 2 ) f(K) Reminder: ψ2 (z) := φT−t (z)Siz t− (iz−1)iz , ζ := v − iα, EP∗ [(ST − K)+|Ft− ] = 1 π ∞ 0 K−iζ+1ψ2 (ζ)dv =: f(K).
  38. ࣮ߦ؀ڥ ݴޠ : Matlab(R2013a) ← ਺஋ܭࢉݴޠ Matrix Laboratory ͷུ MathWorks

    ࣾ (ถࠃ) ੡ ߦྻܭࢉ͕ڧྗ͔ͭखܰʹߦ͑Δ PC : iMac (27-inch, Mid 2011) CPU : 3.4 GHz Intel Core i7 (4 core, 8-thread) Mem. : 16 GB 1333 MHz DDR3 FFT ͸جຊతʹ 1CPU ͰܭࢉΛߦ͏ͨΊɺฒྻԽ͸೉͍͠ ⇒ Xeon E5 × 2, 128GB Mem. ͸ FFT ͚ͩͰ࢖͏ʹ͸ɾ ɾ ɾ
  39. Merton model ͷ਺஋ܭࢉ model parameter: T = 1, µ =

    −0.7, σ = 0.2, γ = 1, m = 0, δ = 1. FFT parameter: N = 214, η = 0.025, α = 1.75 → Nη = 409.6 ࣍ͷೋͭͷ৔߹Λߟ͑Δ strike price K = 1 ͱͯ͠ɺ LRMt Λܭࢉ ͦͷࡍɺt = 0, 0.05, · · · , 0.95 ͱ͢Δ t = 0.5 ͱͯ͠ɺLRM0.5 Λܭࢉ ͦͷࡍɺK = 1, 1.25, 1.5, · · · , 8 ͱ͢Δ NOTE t ͷ஋ʹґΒͣɺLt− = 1 ͱ͍ͯ͠Δ
  40. Merton models 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    0.8 0.9 1 0.986 0.988 0.99 0.992 0.994 0.996 0.998 t LRM t (a) Merton models, strike price K = 1, maturity T = 1 parameter: µ = −0.7, σ = 0.2, γ = 1, m = 0, δ = 1 .
  41. Merton models 1 2 3 4 5 6 7 8

    0.7 0.75 0.8 0.85 0.9 0.95 1 K LRM 0.5 (b) Merton models, maturity T = 1, at t = 0.5, parameter: µ = −0.7, σ = 0.2, γ = 1, m = 0, δ = 1 .
  42. Variance Gamma models ࣍ʹɺσ = 0 ͷ৔߹Λߟ͑Δ ࠓɺGt Λ parameter

    (1/κ, 1/κ) Ͱ͋Δ gamma աఔͱ͢Δ ͜͜Ͱɺκ > 0 Ͱ͋Δ ͜ΕΛ subordinator ͱ͢Δ drift ෇͖ 1 ࣍ݩ Brown ӡಈͷ࣌ؒม ԽΛ Lt ͱ͢ΔϞσϧΛߟ͑Δ ͭ·Γɺ Lt = mGt + δBGt ͱ͢Δ Bt ͸ 1 ࣍ݩඪ४ Brown ӡಈɺm ∈ R, δ > 0 ͜ͷΑ͏ͳ֬཰աఔΛ variance Gamma (VG) աఔͱݺͿ
  43. Variance Gamma models L´ evy measure : ν(dx) = C(1{x<0}

    e−G|x| + 1{x>0} e−M|x|) dx |x| = C(1{x<0} eGx + 1{x>0} e−Mx) dx |x| , ͨͩ͠ɺ C := 1 κ , G := m2 + 2δ2 κ δ2 + m δ2 , M := m2 + 2δ2 κ δ2 − m δ2 .
  44. Variance Gamma models νP∗ (dx) ʹ͍ͭͯ νP∗ (dx) = ν(1+h)C,G,M

    (dx) + ν−hC,G+1,M−1 (dx), where h = µS R0 (ex−1)2ν(dx) . Ծఆ (ຬͨ͢΂͖৚݅) C > 0 , G > 0 , M > 4 , log (M − 1)(G + 1) (M − 2)(G + 2) > 0 ≥ log MG (M − 1)(G + 1) νC,G,M := C(1{x<0} eGx + 1{x>0} e−Mx) dx
  45. Variance Gamma models φT−t (z) ʹ͍ͭͯ φT−t (z) = 1

    + iz G 1 − iz M −(1+h)(T−t)C 1 + iz G + 1 1 − iz M − 1 h(T−t)C × exp (T − t)iz µ∗ + (1 + h)C M − G GM − hC M − G − 2 (G + 1)(M − 1) , where µ∗ = R0 (x − ex + 1)νP∗ (dx).
  46. I2 = R0 EP∗ [(ST ex − K)+ − (ST

    − K)+|Ft− ](ex − 1)ν(dx) = 1 π ∞ 0 R0 (eiζx − 1)(ex − 1)ν(dx)K−iζ+1ψ2 (ζ)dv = 1 π ∞ 0 K−iζ+1ψVG (ζ)dv − 1 π ∞ 0 C log MG (M − 1)(G + 1) K−iζ+1ψ2 (ζ)dv. ͜͜Ͱɺ ψVG (ζ) := C log M − iζ M − 1 − iζ G + iζ G + 1 + iζ ψ2 (ζ). Recall : ψ2 (ζ) = φT−t(ζ)Siζ t− (iζ−1)iζ , σ = 0 −→ σI1 = 0.
  47. Variance Gamma model ͷ਺஋ܭࢉ 1. model parameter : µ =

    −0.16, κ = 0.15, m = −0.5, δ = 0.45. LRMt Λ Merton model ͱಉ͘͡ܭࢉ͢Δ. 2. parameter ਪఆʹ͍ͭͯ ࠾༻ͨ͠ࢢ৔σʔλɿ̎̌̍̐೥݄̏ͷ೔ܦฏۉגՁ (ऴ஋) ਪఆํ๏ɿmoment ๏ͱ Levenberg–Marquardt ๏Λ༻͍ͨ C = 2.4693, G = 23.743, M = 24.903.
  48. Variance Gamma model LRMt 0 0.1 0.2 0.3 0.4 0.5

    0.6 0.7 0.8 0.9 1 0.98 0.985 0.99 0.995 1 1.005 t LRM t (c) variance Gamma model, parameter : µ = −0.16, κ = 0.15, m = −0.5, δ = 0.45.
  49. Variance Gamma model LRM0.5 1 2 3 4 5 6

    7 8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K LRM 0.5 (d) variance Gamma model. t = 0.5 0.21 sec.
  50. Variance Gamma model LRM0.5 0 0.1 0.2 0.3 0.4 0.5

    0.6 0.7 0.8 0.9 1 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 t LRM t (e) variance Gamma model. based on estimated data
  51. Variance Gamma model LRM0.5 10000 11000 12000 13000 14000 15000

    16000 17000 18000 19000 20000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K LRM 0.5 (f) variance Gamma model. based on estimated data
  52. MMM (P∗) ͷԼͰͷ Delta Hedging Strategy ∆P∗ t ఆٛ For

    any K > 0 and any underlying asset pricing s > 0, delta hedging strategies under the minimal martingale measure is defined as ∆P∗ t := ∂EP∗ [(ST − K)+ | St− = s] ∂s . Black–Scholes model ͷ࣌͸ɺ௨ৗͷఆٛͱҰக͢Δ Theorem For any K > 0, t ∈ [0, T] and α ∈ (1, 2], we have delta hedging strategies as follows: ∆P∗ t = I1 St− . cf. Denkl et al., On the performance of delta hedging strategies in exponential
  53. ෆ౳ࣜධՁ Theorem For any χt− > 0, t ∈ [0,

    T] and α ∈ (1, 2], there exists a constant C such that |LRMt − ∆P∗ t | ≤ Cχ1−α t− . We obtain, furthermore, lim χt−→0 |LRMt − ∆P∗ t | = 0 . ͜͜Ͱ χt− = K St− ͸ moneyness Λද͢ LRMt ΍ ∆P∗ t ͸ moneyness χ ͷؔ਺ͱͯ͠ॻ͚Δ C ͸ model ʹΑͬͯҟͳΔ
  54. ෆ౳ࣜධՁ ఆཧ (Merton models) |LRMt − ∆P∗ t | ≤

    C1 C(m,δ,α) σ 2π(T − t) χ1−α t− σ2 + R0 (ex − 1)2ν(dx) = C1 C(m,δ,α) σ(σ2 + C) 2π(T − t) χ1−α t− . ͜͜Ͱɺ C := R0 (ex − 1)2ν(dx) ,
  55. ෆ౳ࣜධՁ C1 := exp (T − t) αµ∗ + σ2α2

    2 + (1 + h)γ(emα+α 2 δ 2 2 − 1 − αm) − hγe2m+δ 2 2 e(m+δ2)α+α 2 δ 2 2 − 1 − α(m + δ2) , C(m,δ,α) :=γ em(α+1)+δ 2 2 (α+1)2 + em+δ 2 2 + emα+δ 2 2 α2 + 1 + γ m + δ2 √ 2 + 2α em(α+1)+δ 2 2 (α+1)2 + γ m + δ2 emα+δ 2 2 α2 .
  56. ෆ౳ࣜධՁ ఆཧ (VG models) |LRMt − ∆P∗ t | ≤

    1 π C(C,G,M,α) C (ϵC0 )−1 2 (1+h)(T−t)C ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ˜ K1 2 h(T−t)Ca − C 1 2 h(T−t)C 4 2h(T − t)C + 1 a2h(T−t)C+1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ χ1−α t− . ͜͜Ͱɺະఆٛͳม਺ C(C,G,M,α), C, C0, ˜ K, C4, ϵ ͷఆٛ͸ࠐΈೖΓ͢ ͗ΔͷͰলུ
  57. Merton Models Ͱ਺஋ܭࢉ model parameter (Assumption Λຬͨ͢ਓ޻తͳ஋): T = 1,

    µ = −0.7, σ = 0.2, γ = 1, m = 0, δ = 1. FFT parameter: N = 214, η = 0.025, α = 1.75 → Nη = 409.6 strike price K = 1 ͱͯ͠ɺ LRMtɺ∆P∗ t ɺ|LRMt − ∆P∗ t | Λܭࢉ ͦͷࡍɺt = 0, 0.05, · · · , 0.95 ͱ͢Δ t = 0.5 ͱͯ͠ɺLRM0.5ɺ∆P∗ 0.5 ɺ|LRM0.5 − ∆P∗ 0.5 | Λܭࢉ ͦͷࡍɺK = 1, 1.25, 1.5, · · · , 8 ͱ͢Δ
  58. Merton Models, LRM0.5 and ∆P∗ 0.5 0 1 2 3

    4 5 6 7 8 9 10 x 1016 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 Moneyness χ LRM 0.5 LRM 0.5 ∆ (g) LRM0.5 and ∆P∗ 0.5 for moneyness χ
  59. Merton Models, |LRM0.5 − ∆P∗ 0.5 | 0 1 2

    3 4 5 6 7 8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Moneyness χ |LRM 0.5 − ∆| (h) |LRM0.5 − ∆P∗ 0.5 | for moneyness χ
  60. Variance Gamma Models ͷ਺஋ܭࢉ ࠾༻ͨ͠ࢢ৔σʔλ : 2014 ೥ 3 ݄ͷ೔ܦฏۉגՁ

    (ऴ஋) model parameter : C = 2.4693, G = 23.743, M = 24.903. model parameter ͷಋग़ʹ͸ Levenberg–Marquardt ๏Λ༻͍ͨ. strike price K = 1 ͱͯ͠ɺ LRMtɺ∆P∗ t ɺ|LRMt − ∆P∗ t | Λܭࢉɻ ͦͷࡍɺt = 0, 0.05, · · · , 0.95 ͱ͢Δ. t = 0.5 ͱͯ͠ɺLRM0.5ɺ∆P∗ 0.5 ɺ|LRM0.5 − ∆P∗ 0.5 | Λܭࢉɻ ͦͷࡍɺK = 1, 1.25, 1.5, · · · , 8 ͱ͢Δɻ
  61. Variance Gamma Models, LRM0.5 and ∆P∗ 0.5 0.7 0.8 0.9

    1 1.1 1.2 1.3 1.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Moneyness χ LRM 0.5 LRM t ∆ (i) LRM0.5 and ∆P∗ 0.5 for moneyness χ with S0 = 14841.07
  62. Variance Gamma Models, |LRM0.5 − ∆P∗ 0.5 | 0.7 0.8

    0.9 1 1.1 1.2 1.3 1.4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Moneyness χ |LRM 0.5 − ∆| (j) |LRM0.5 − ∆P∗ 0.5 | for moneyness χ, with S0 = 14841.07
  63. Appendix Tankov(2010) Proposition2 Suppose that there exists R 0 such

    that g(x)e−Rx ∈ L1(R) has finite variation onR , E[eRXT−t ] < ∞ and R |ΦT−t (u − iR)| 1 + |u| du < ∞ . Then the price at time t of the European call option with pay-off function G and characteristic function Φt of Xt satisfies P(t, St ) :=e−r(T−t)E[G(ST )|Ft ] = e−r(T−t) 2π R ˆ g(u + iR)ΦT−t (−u − iR)ˆ SR−iu t du , where ˆ g(u) := R eiuxg(x)dx .