Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Nerding Out on Okio (Android Worldwide)

Nerding Out on Okio (Android Worldwide)

Video: https://youtu.be/Du7YXPAV1M8

Quirks and features of the I/O library that powers OkHttp.

Jesse Wilson

April 19, 2022
Tweet

More Decks by Jesse Wilson

Other Decks in Technology

Transcript

  1. @jessewilson
    https://square.github.io/okio/
    Nerding Out on Okio

    View Slide

  2. Okio is Fun
    • Computer Science
    • Software Engineering
    • Widely Deployed & Consequential
    • Brazen!

    View Slide

  3. CS + SWE
    Computer science: a branch of mathematics. Concerned with
    algorithms, datastructures, and measuring computation.
    Software engineering: the work of developing and operating
    software. Concerned with quality, agility, planning, mentorship, and
    collaboration.

    View Slide

  4. Widely Deployed
    In Android OS since 2014
    Used by Retrofit, OkHttp, Coil, Apollo GraphQL, Moshi, Wire

    View Slide

  5. Brazen
    • Java already has a pe ectly good I/O library, java.io
    • Java already has a pe ectly good java.io replacement, java.nio
    • A blocking library in the era of non-blocking
    • Switched to Kotlin in 2018!

    View Slide

  6. I/O

    View Slide

  7. java.io
    • Destinations: File, Socket
    • Roads: InputStream, OutputStream
    • Cars: Byte, ByteArray

    View Slide

  8. class Socket {
    val inputStream: InputStream
    val outputStream: OutputStream
    ...
    }

    View Slide

  9. abstract class InputStream {
    /**
    * Consumes bytes from this stream and copy them to [sink].
    * Returns the number of bytes that were read, or -1 if this
    * input stream is exhausted.
    */
    abstract fun read(sink: ByteArray): Int
    }
    abstract class OutputStream {
    /**
    * Copies all the data in [source] to this.
    */
    abstract fun write(source: ByteArray)
    }

    View Slide

  10. OkHttp Needs I/O

    View Slide

  11. OkHttp’s Job Was Easy
    1. Encode an HTTP request as a ByteArray
    2. Write that ByteArray to a socket’s OutputStream
    3. Read a ByteArray from a socket’s InputStream
    4. Decode that ByteArray as an HTTP response

    View Slide

  12. Adding HTTP/2
    • HTTP/2 is multiplexed:
    1. Chop each HTTP request into frames
    2. Write each frame to the socket’s OuputStream
    3. Read frames from the socket’s InputStream
    4. Assemble frames into an HTTP response
    • Frames from different responses are interleaved!

    View Slide

  13. class Http2Connection {
    private val streams = mutableMapOf()
    private fun processNextFrame(in: InputStream) {
    when (val frame = readFrame(in)) {
    is Frame.DataFrame -> {
    streams[frame.streamId]!!.receive(frame.data)
    }
    ...
    }
    }
    }

    View Slide

  14. class Stream : InputStream() {
    internal fun receive(data: ByteArray) {
    ...
    }
    override fun read(sink: ByteArray): Int {
    ...
    }
    }

    View Slide

  15. 6 Buffers

    View Slide

  16. Buffer as a List
    — IMPLEMENTATION 1 —

    View Slide

  17. class Buffer {
    private val buffer = mutableListOf()
    fun write(source: ByteArray) {
    for (b in source) buffer += b
    }
    fun read(sink: ByteArray): Int {
    if (buffer.isEmpty()) return -1
    val byteCount = minOf(sink.size, buffer.size)
    for (i in 0 until byteCount) {
    sink[i] = buffer.removeFirst()
    }
    return byteCount
    }
    }

    View Slide

  18. View Slide

  19. buffer.write(data)

    View Slide

  20. buffer.write(data)

    View Slide

  21. View Slide

  22. buffer.read(data)

    View Slide

  23. buffer.read(data)

    View Slide

  24. View Slide

  25. A List of Bytes
    • Easy to get right!
    • Extremely slow
    • Autoboxing conve s from JVM byte primitive type to JVM
    java.lang.Byte object type
    • Byte-at-a-time requires too many instructions and too many
    function calls

    View Slide

  26. Buffer as a ByteArray
    — IMPLEMENTATION 2 —

    View Slide

  27. class Buffer {
    private var buffer = ByteArray(0)
    fun write(source: ByteArray) {
    val newBuffer = ByteArray(buffer.size + source.size)
    buffer.copyInto(newBuffer, destinationOffset = 0)
    source.copyInto(newBuffer, destinationOffset = buffer.size)
    buffer = newBuffer
    }
    fun read(sink: ByteArray): Int {
    if (buffer.isEmpty()) return -1
    val byteCount = minOf(sink.size, buffer.size)
    val newBuffer = ByteArray(buffer.size - byteCount)
    buffer.copyInto(sink, endIndex = byteCount)
    buffer.copyInto(newBuffer, startIndex = byteCount, endIndex = buffer.size)
    buffer = newBuffer
    return byteCount
    }
    }

    View Slide

  28. View Slide

  29. buffer.write(data)

    View Slide

  30. buffer.write(data)

    View Slide

  31. buffer.write(data)

    View Slide

  32. buffer.write(data)

    View Slide

  33. buffer.write(data)

    View Slide

  34. View Slide

  35. buffer.read(data)

    View Slide

  36. buffer.read(data)

    View Slide

  37. buffer.read(data)

    View Slide

  38. buffer.read(data)

    View Slide

  39. buffer.read(data)

    View Slide

  40. View Slide

  41. A Simple ByteArray
    • Easy to get right
    • Slow
    • Lots of allocations
    • Every byte gets copied around a lot

    View Slide

  42. A Slice of a ByteArray
    — IMPLEMENTATION 3 —

    View Slide

  43. class Buffer {
    private var buffer = ByteArray(0)
    private var pos = 0
    private var limit = 0
    fun write(source: ByteArray) {
    val requiredSize = limit - pos + source.size
    if (requiredSize > buffer.size) {
    val newBuffer = ByteArray(size = maxOf(requiredSize, buffer.size * 2))
    buffer.copyInto(newBuffer, startIndex = pos, endIndex = limit)
    limit -= pos
    pos = 0
    } else if (limit + source.size > buffer.size) {
    buffer.copyInto(buffer, startIndex = pos, endIndex = limit)
    limit -= pos
    pos = 0
    }
    source.copyInto(buffer, destinationOffset = limit)
    limit += source.size
    }
    ...
    }

    View Slide

  44. View Slide

  45. buffer.write(data)

    View Slide

  46. buffer.write(data)

    View Slide

  47. buffer.write(data)

    View Slide

  48. buffer.write(data)

    View Slide

  49. buffer.write(data)

    View Slide

  50. View Slide

  51. buffer.read(data)

    View Slide

  52. buffer.read(data)

    View Slide

  53. buffer.read(data)

    View Slide

  54. buffer.read(data)

    View Slide

  55. View Slide

  56. A Slice of a ByteArray
    • More difficult to get right
    • Getting Faster
    • Need to defend against worst-case access patterns
    • Copies to shift the data within the buffer

    View Slide

  57. Circular Slice
    — IMPLEMENTATION 4 —

    View Slide

  58. class Buffer {
    private var buffer = ByteArray(0)
    private var pos = 0
    private var byteCount = 0
    fun write(source: ByteArray) {
    val requiredSize = byteCount + source.size
    if (requiredSize > buffer.size) {
    val newBuffer = ByteArray(size = maxOf(requiredSize, buffer.size * 2))
    if (pos + byteCount > buffer.size) {
    buffer.copyInto(
    newBuffer,
    startIndex = pos,
    )
    buffer.copyInto(
    newBuffer,
    destinationOffset = buffer.size - pos,
    endIndex = byteCount - (buffer.size - pos),
    )
    } else {
    buffer.copyInto(
    newBuffer,

    View Slide

  59. source.copyInto(
    buffer,
    destinationOffset = offset
    )
    } else {
    source.copyInto(
    buffer,
    destinationOffset = offset,
    endIndex = buffer.size - offset,
    )
    source.copyInto(
    buffer,
    destinationOffset = 0,
    startIndex = buffer.size - offset,
    )
    byteCount += buffer.size
    }
    }
    ...
    }

    View Slide

  60. View Slide

  61. buffer.write(data)

    View Slide

  62. buffer.write(data)

    View Slide

  63. buffer.write(data)

    View Slide

  64. buffer.write(data)

    View Slide

  65. View Slide

  66. buffer.read(data)

    View Slide

  67. buffer.read(data)

    View Slide

  68. buffer.read(data)

    View Slide

  69. buffer.read(data)

    View Slide

  70. buffer.read(data)

    View Slide

  71. View Slide

  72. Circular Slice
    • Even more difficult to get right
    • Faster still
    • Every byte is copied once on the way in, once on the way out
    • Buffers never shrink their memory use

    View Slide

  73. Transfer Array Ownership
    — IMPLEMENTATION 5 —

    View Slide

  74. Java I/O Streams Gotta Copy
    abstract class InputStream {
    /**
    * Consumes bytes from this stream and copy them to [sink].
    * Returns the number of bytes that were read, or -1 if this
    * input stream is exhausted.
    */
    abstract fun read(sink: ByteArray): Int
    }

    View Slide

  75. class Buffer {
    /**
    * Transfers all bytes from [source] to this.
    */
    fun write(source: Buffer)
    /**
    * Transfers all bytes from this to [sink].
    */
    fun read(sink: Buffer): Int
    }
    I/O Without Copies

    View Slide

  76. [ ]

    View Slide

  77. buffer.write(data)
    [ ]
    [ ]

    View Slide

  78. buffer.write(data)
    [ ]
    []
    ,

    View Slide

  79. [ ]
    ,

    View Slide

  80. [ ]
    ,
    buffer.read(data, 10)
    []

    View Slide

  81. [ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  82. [ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  83. [ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  84. [ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  85. [ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  86. buffer.read(data, 10)
    [ ]
    ,
    [ ]

    View Slide

  87. [ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  88. [ ]

    View Slide

  89. class Buffer {
    private var segments = mutableListOf()
    var size: Int = 0
    /** ... */
    fun write(source: Buffer) {
    size += source.size
    segments += source.segments
    source.size = 0
    source.segments.clear()
    }
    /** ... */
    fun read(sink: Buffer): Int {
    val result = size
    sink.write(this)
    return result
    }
    }

    View Slide

  90. Transferring Ownership
    • A depa ure from java.io APIs
    • Fast?
    • Writing pa of a Buffer requires copies to split arrays
    • Worst-case pe ormance is bad! Things behave like the first
    implementation (List) if the arrays are small

    View Slide

  91. OkBuffer
    — IMPLEMENTATION 6 —

    View Slide

  92. class OkBuffer {
    private class Segment(
    val data: ByteArray,
    val pos: Int,
    val limit: Int,
    )
    private var segments = mutableListOf()
    private var size: Int = 0
    fun write(source: Buffer, byteCount: Int) {
    ...
    }
    fun read(sink: Buffer, byteCount: Int): Int {
    ...
    }
    }

    View Slide

  93. ]
    x[

    View Slide

  94. buffer.write(data)
    ]
    [ ]
    x[

    View Slide

  95. buffer.write(data)
    ]
    []
    ,
    [

    View Slide

  96. ]
    ,
    [

    View Slide

  97. ]
    ,
    buffer.read(data, 10)
    []
    [

    View Slide

  98. x[ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  99. x[ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  100. x[ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  101. x[ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  102. x[ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  103. x[ ]
    buffer.read(data, 10)
    [ ]
    ,

    View Slide

  104. x,
    x[ ]
    buffer.read(data, 10)
    [ ]

    View Slide

  105. x[ ]

    View Slide

  106. OkBuffer
    • Borrows from transfer ownership + array slice strategies
    • All arrays are the same size – 8 KiB – which we call a segment
    • Three ways to move data between buffers:
    • Transfer ownership of a segment
    • Copy data between segments
    • Split a segment so both halves share a ByteArray, but maintain
    independent pos and limit

    View Slide

  107. OkBuffer in OkHttp

    View Slide

  108. class Stream {
    val buffer = OkBuffer()
    fun receive(source: OkBuffer, byteCount: Long) {
    synchronized(this) {
    buffer.write(source, byteCount)
    }
    }
    fun read(sink: OkBuffer, byteCount: Long): Long {
    synchronized(this) {
    if (buffer.size == 0L) return -1L
    val result = minOf(byteCount, buffer.size)
    sink.write(buffer, result)
    return result
    }
    }
    }

    View Slide

  109. Let’s Open Source This!

    View Slide

  110. View Slide

  111. okio
    • Destinations: File, Socket
    • Roads: Source, Sink
    • Cars: Buffer

    View Slide

  112. interface Source : Closeable {
    fun read(sink: Buffer, byteCount: Long): Long
    fun timeout(): Timeout
    }
    interface Sink : Closeable {
    fun write(source: Buffer, byteCount: Long)
    fun flush()
    fun timeout(): Timeout
    }

    View Slide

  113. Zero Fill

    View Slide

  114. Fresh New Arrays
    • What does ByteArray(8192) do?
    • Asks the memory manager for some memory (8192 + 16 bytes)
    • Writes an object header (16 bytes)
    • Writes 0 to each of the remaining 8192 bytes
    • Calling ByteArray(8192) takes 8x longer than ByteArray(1024)
    https://publicobject.com/2020/07/26/optimizing-new-byte/

    View Slide

  115. Segment Pooling
    • When a Buffer is done with a Segment, Okio ‘recycles’ it in a
    private shared List
    • This makes writing data faster
    • It also saves work for the garbage collector

    View Slide

  116. Fast Clone

    View Slide

  117. Reading is Destructive
    • Because buffers transfer data rather than copying it, once you
    read a byte it’s gone!
    • Mitigate with Buffer.clone()
    • But how to make clone fast?

    View Slide

  118. class Buffer {
    private class Segment(
    val pos: Int,
    val limit: Int,
    val data: ByteArray,
    /** True if other segments use the same byte array. */
    val shared: Boolean,
    )
    ...
    }

    View Slide

  119. Copy Metadata, Not Data
    • Buffer.clone() creates new Segment metadata objects
    • No bytes are copied!
    • There are implications for pooling

    View Slide

  120. Read & Write Whatever

    View Slide

  121. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  122. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  123. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  124. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  125. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  126. interface Buffer {
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    fun writeLong(Long)
    fun writeDecimalLong(Long)
    fun writeHexadecimalUnsignedLong(Long)
    fun writeString(String, Charset)
    fun writeUtf8(String)
    fun writeUtf8CodePoint(Int)
    fun writeAll(Source): Long
    }
    fun write(ByteArray, Int, Int)
    fun writeShortLe(Int)
    fun writeIntLe(Int)
    fun writeLongLe(Long)
    fun writeString(String, Int, Int, Charset)
    fun writeUtf8(String, Int, Int)
    fun write(Source, Long)

    View Slide

  127. interface Buffer {
    fun readByteArray()
    fun readByteArray(Long)
    fun readByte()
    fun readShort()
    fun readShortLe()
    fun readInt()
    fun readIntLe()
    fun readLong()
    fun readLongLe()
    fun readDecimalLong()
    fun readHexadecimalUnsignedLong()
    fun readString(Charset)
    fun readString(Long, Charset)
    fun readUtf8()
    fun readUtf8(Long)
    fun readUtf8CodePoint()
    fun readAll(Sink)
    }
    /**
    * Reads until the next `\r\n`, `\n`, or the
    * end of the file. Returns null at the end.
    */
    fun readUtf8Line(): String?
    /**
    * Reads until the next `\r\n` or `\n`. Use
    * this for machine-generated text.
    */
    fun readUtf8LineStrict(): String
    /**
    * Like readUtf8LineStrict() but throws if
    * no newline is within [limit] bytes.
    */
    fun readUtf8LineStrict(limit: Long): String

    View Slide

  128. interface Buffer {
    fun readByteArray()
    fun readByteArray(Long)
    fun readByte()
    fun readShort()
    fun readShortLe()
    fun readInt()
    fun readIntLe()
    fun readLong()
    fun readLongLe()
    fun readDecimalLong()
    fun readHexadecimalUnsignedLong()
    fun readString(Charset)
    fun readString(Long, Charset)
    fun readUtf8()
    fun readUtf8(Long)
    fun readUtf8CodePoint()
    fun readAll(Sink)
    }
    /**
    * Reads until the next `\r\n`, `\n`, or the
    * end of the file. Returns null at the end.
    */
    fun readUtf8Line(): String?
    /**
    * Reads until the next `\r\n` or `\n`. Use
    * this for machine-generated text.
    */
    fun readUtf8LineStrict(): String
    /**
    * Like readUtf8LineStrict() but throws if
    * no newline is within [limit] bytes.
    */
    fun readUtf8LineStrict(limit: Long): String

    View Slide

  129. interface Buffer {
    fun readByteArray()
    fun readByteArray(Long)
    fun readByte()
    fun readShort()
    fun readShortLe()
    fun readInt()
    fun readIntLe()
    fun readLong()
    fun readLongLe()
    fun readDecimalLong()
    fun readHexadecimalUnsignedLong()
    fun readString(Charset)
    fun readString(Long, Charset)
    fun readUtf8()
    fun readUtf8(Long)
    fun readUtf8CodePoint()
    fun readAll(Sink)
    }
    /**
    * Reads until the next `\r\n`, `\n`, or the
    * end of the file. Returns null at the end.
    */
    fun readUtf8Line(): String?
    /**
    * Reads until the next `\r\n` or `\n`. Use
    * this for machine-generated text.
    */
    fun readUtf8LineStrict(): String
    /**
    * Like readUtf8LineStrict() but throws if
    * no newline is within [limit] bytes.
    */
    fun readUtf8LineStrict(limit: Long): String

    View Slide

  130. interface Buffer {
    fun readByteArray()
    fun readByteArray(Long)
    fun readByte()
    fun readShort()
    fun readShortLe()
    fun readInt()
    fun readIntLe()
    fun readLong()
    fun readLongLe()
    fun readDecimalLong()
    fun readHexadecimalUnsignedLong()
    fun readString(Charset)
    fun readString(Long, Charset)
    fun readUtf8()
    fun readUtf8(Long)
    fun readUtf8CodePoint()
    fun readAll(Sink)
    }
    /**
    * Reads until the next `\r\n`, `\n`, or the
    * end of the file. Returns null at the end.
    */
    fun readUtf8Line(): String?
    /**
    * Reads until the next `\r\n` or `\n`. Use
    * this for machine-generated text.
    */
    fun readUtf8LineStrict(): String
    /**
    * Like readUtf8LineStrict() but throws if
    * no newline is within [limit] bytes.
    */
    fun readUtf8LineStrict(limit: Long): String

    View Slide

  131. Source
    Buffer +
    Sink

    View Slide

  132. interface BufferedSink : Sink {
    override fun write(Buffer, Long)
    fun write(ByteArray)
    fun writeByte(Int)
    fun writeShort(Int)
    fun writeInt(Int)
    ...
    }
    interface BufferedSource : Source {
    override fun read(Buffer, Long): Long
    fun readByteArray(): ByteArray
    fun readByte(): Byte
    fun readShort(): Short
    fun readInt(): Int
    ...
    }
    interface Buffer : BufferedSource, BufferedSink {
    ...
    }

    View Slide

  133. Buffering Streams
    • Better usability
    • Friendly methods like writeDecimalLong(), readUtf8Line()
    • Better pe ormance
    • Moves data 8 KiB at a time
    • ~ Zero overhead
    • Buffers don’t add copying!

    View Slide

  134. COOL THINGS
    10

    View Slide

  135. // True if the stream has at least 100 more bytes.
    if (source.request(100)) {
    // ...
    }
    // Like request() but throws if there isn't enough data.
    source.require(100)
    // True once there's nothing left. Like !request(1).
    if (source.exhausted()) {
    // ...
    }
    END OF STREAM HANDLING
    #1

    View Slide

  136. /**
    * Call [BufferedSource.peek] to do an arbitrarily-long
    * lookahead. It uses the same segment sharing stuff as
    * clone to keep things fast!
    *
    * Moshi's JSON uses this when polymorphic decoding to
    * look ahead at the type.
    */
    fun readCelestial(source: BufferedSource): Celestial {
    val peek = source.peek()
    val type = findType(peek)
    peek.close()
    return decode(source, type)
    }
    PEEK IS LIKE A STREAMING CLONE
    #2

    View Slide

  137. private val celestialTypes = Options.of(
    "star".encodeUtf8(),
    "planet".encodeUtf8(),
    "moon".encodeUtf8(),
    )
    fun readCelestialType(source: BufferedSource): KClass? {
    return when (source.select(celestialTypes)) {
    0 -> Celestial.Star::class
    1 -> Celestial.Planet::class
    2 -> Celestial.Moon::class
    else -> null
    }
    }
    SELECT USES a TRIE FOR FAST READING
    #3
    https://speakerdeck.com/swankjesse/json-explained-chicago-roboto-2019

    View Slide

  138. /**
    * Create input and output streams from Okio. Buffer can replace
    * both [ByteArrayOutputStream] and [ByteArrayInputStream] !
    */
    fun interopWithJavaIo(file: File) {
    val source = file.source().buffer()
    val bitmap = source.use {
    BitmapFactory.decodeStream(source.inputStream())
    }
    addFunnyMoustaches(bitmap)
    val sink = file.sink().buffer()
    sink.use {
    bitmap.compress(JPEG, 100, sink.outputStream())
    }
    }
    READ & WRITE AS JAVA.IO STREAMS
    #4

    View Slide

  139. fun connectThreads(): Long {
    val pipe = Pipe(maxBufferSize = 1024)
    Thread {
    pipe.sink.buffer().use { sink ->
    for (i in 0L until 1000L) {
    sink.writeLong(i)
    }
    }
    }.start()
    var total = 0L
    pipe.source.buffer().use { source ->
    while (!source.exhausted()) {
    total += source.readLong()
    }
    }
    return total
    }
    PIPE CONNECTS A READER & A WRITER
    #5

    View Slide

  140. THROTTLER SLOWS THINGS DOWN
    #6

    View Slide

  141. THROTTLER SLOWS THINGS DOWN
    #6

    View Slide

  142. CURSORS OFFER BYTEARRAY ACCESS
    #7
    /**
    * Connect Okio's cursor to Guava's Murmur3F hash function. This uses
    * Buffer.UnsafeCursor to access the buffer's byte arrays.
    */
    fun Buffer.murmur3(): HashCode {
    val hasher = Hashing.murmur3_128().newHasher()
    readUnsafe().use { cursor ->
    while (cursor.next() != -1) {
    hasher.putBytes(
    cursor.data!!,
    cursor.start,
    cursor.end - cursor.start
    )
    }
    }
    return hasher.hash()
    }

    View Slide

  143. fun runProcess() {
    val process = ProcessBuilder()
    .command("find", "/", "-name", "README.md")
    .start()
    val timeout = object : AsyncTimeout() {
    override fun timedOut() {
    process.destroyForcibly()
    }
    }
    timeout.deadline(5, TimeUnit.SECONDS)
    timeout.withTimeout {
    val source = process.inputStream.source().buffer()
    while (true) {
    println(source.readUtf8Line() ?: break)
    }
    }
    }
    TIMEOUTS WORK EVERYWHERE
    #8

    View Slide

  144. /**
    * This uses [BufferedSource.readByteString] to read an entire stream
    * into a single immutable value. ByteString is a great container for
    * encoded data like protobufs, messages, and snapshots of files.
    */
    private fun handleResponse(response: Response): HandledResponse {
    if (!response.isSuccessful) {
    val source = response.body.source()
    return HandledResponse.UnexpectedStatus(
    response.code,
    response.headers,
    source.readByteString(),
    )
    }
    ...
    }
    BYTESTRING IS A VALUE
    #9

    View Slide

  145. /**
    * This uses [ByteString.hmacSha256] to takes a HMAC of a request
    * body to authenticate a webhook call. Okio includes SHA-1 and
    * SHA-256 hashes for byte strings, buffers, and streams.
    */
    fun webHookSignatureCheck(
    headers: Headers,
    requestBody: ByteString,
    ) {
    val hmacSha256 = requestBody.hmacSha256(secret).hex()
    if (headers["X-Hub-Signature-256"] != "sha256=$hmacSha256") {
    throw IOException("signature check failed")
    }
    }
    HASHING CAN BE EASY
    #10

    View Slide

  146. COOL THINGS
    10
    REQUIRE
    PEEK
    SELECT
    JAVA.IO
    1.
    2.
    3.
    4.
    5.
    6.
    7.
    PIPE
    THROTTLER
    CURSORS
    8.
    9.
    TIMEOUTS
    BYTESTRING
    10. HASHING

    View Slide

  147. Okio 3’s FileSystem

    View Slide

  148. Why?
    • Kotlin Multiplatform needs a file system!
    • JVM file APIs fight you if you try to write tests
    • We thought we could do better

    View Slide

  149. Challenges
    • Multiplatform is difficult when the platforms are very different!
    • Deliberately not suppo ing everything! No Volume management,
    permissions, watches, or locking
    • Testing real implementations was tough

    View Slide

  150. fun writeSequence(fileSystem: FileSystem, path: Path) {
    fileSystem.write(path, mustCreate = true) {
    for (i in 0L until 1000L) {
    writeDecimalLong(i)
    writeByte('\n'.code)
    }
    }
    }
    fun readSequence(fileSystem: FileSystem, path: Path): Long {
    fileSystem.read(path) {
    var total = 0L
    while (!exhausted()) {
    total += readDecimalLong()
    readByte()
    }
    return total
    }
    }

    View Slide

  151. Highlights
    • FakeFileSystem
    • FileSystem.openZip()
    • ForwardingFileSystem
    • Kotlin for APIs! Like mustCreate & mustExist as optional
    parameters

    View Slide

  152. Regrets

    View Slide

  153. BufferedSource is a Bad Name
    • We have two inte aces:
    • Source is the easy-to-implement one
    • BufferedSource is the easy-to-call one
    • We should have saved the good name (Source) for the inte ace
    you use all the time
    • Similarly for Sink and BufferedSink

    View Slide

  154. Timeout vs. Cancel
    • Every Source and Sink in Okio comes with a Timeout
    • A cancel() method would have been better!
    https://github.com/python-trio/trio

    View Slide

  155. Controversies

    View Slide

  156. Controversy 1: It’s Blocking
    • Java server I/O trend: everything asynchronous with Futures,
    callbacks, and event loops
    • Okio: everything is blocking

    View Slide

  157. Blocking vs. Non-Blocking
    • Non-blocking lets you can service N concurrent callers with fewer
    than N threads
    • Non-blocking is not otherwise faster
    • Overhead of abstractions that move work between threads, plus
    cost of context-switching

    View Slide

  158. View Slide

  159. Loom is Coming!
    • Rather than making async better, why not make threads cheaper?
    • Vi ual threads are coming soon to the JVM
    • Currently in preview!
    https://openjdk.java.net/jeps/425

    View Slide

  160. Also Not Suspending?
    • Cost to suspend byte-by-byte
    • Suspend in Retrofit / Wire / Coil instead

    View Slide

  161. Controversy 2: Kotlin Switch
    • In 2018 we pressed ⌥⇧⌘K and conve ed Okio from Java to
    Kotlin, introducing a dependency on the Kotlin standard library
    • Java programmers are suspicious of alternative JVM languages
    https://speakerdeck.com/swankjesse/ok-multiplatform-droidcon-nyc-2018

    View Slide

  162. View Slide

  163. No Regrets on Kotlin
    • Kotlin’s been really good to us
    • We’re doing exciting things with multiplatform
    • Kotlin maintainers’ devotion to compatibility means none of the
    feared problems have materialized

    View Slide

  164. Next Steps

    View Slide

  165. Okio in 2022
    • Okio’s healthy, stable, and the happy kind of boring
    • Enjoy!

    View Slide

  166. @jessewilson
    Thanks
    https://square.github.io/okio/

    View Slide