Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GSEA-InContext: identifying novel and common pa...
Search
Y-h. Taguchi
August 13, 2018
Science
1
280
GSEA-InContext: identifying novel and common patterns in expression experiments
ISMB2018読み会
https://atnd.org/events/98383
でのプレゼンです。
Y-h. Taguchi
August 13, 2018
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
60
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
0
79
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
37
知能とはなにかーヒトとAIのあいだー
tagtag
0
140
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
98
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
80
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
110
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
ゲノム解析における射影: 特徴選択ツールとしてのテンソル分解と主成分分析を合理化する理論的根拠
tagtag
0
49
Other Decks in Science
See All in Science
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
機械学習 - SVM
trycycle
PRO
1
900
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
650
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
370
Accelerated Computing for Climate forecast
inureyes
0
120
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
640
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
310
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
660
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
120
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
160
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
190
高校生就活へのDA導入の提案
shunyanoda
0
6k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Embracing the Ebb and Flow
colly
88
4.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Automating Front-end Workflow
addyosmani
1371
200k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Code Reviewing Like a Champion
maltzj
526
40k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Designing Experiences People Love
moore
142
24k
The Language of Interfaces
destraynor
162
25k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
ISMB2018読み会 GSEA-InContext: identifying novel and common patterns in expression experiments
Rani K. Powers, Andrew Goodspeed, Harrison Pielke-Lombardo, Aik-Choon Tan and James C. Costello Bioinformatics, 34, 2018, i555–i564 doi: 10.1093/bioinformatics/bty271 報告者: 中央大学理工学部物理学科 田口善弘
論文の目的: 論文の目的: GSEA(Gene Set Enrichment Analysis)は「遺伝子を『何か(例: 発現差の大きさ)の順番』で並べた場合、順番には意味があ る。ある遺伝子セットAが有意に上位に並ぶなら、そのセットに は『何か』の大きさが有意に大きい遺伝子のセットであるとい えるだろう」
というものですが、その場合「有意に上位に並ぶ」の判定をす るときの比較対象(=帰無仮説)が「完全にランダムな並び」 になっている。しかし、遺伝子はお互いに相関しているんだか ら、『何か』と全く無関係じゃない限り、遺伝子セットAはどっち にしろグループで動く(上位に来る)だろう。そうなると「遺伝 子セットAに意味があるか?」という検証にはなっても「順位 付けした『何か』と関係している」と言えなくないか? この問題は解決するには比較対象を完全にランダムな並び じゃなく、いろいろな実験での並びの集合に置き換えないとい けないのでは?
比較対象 比較対象 ・GEOから集めた ・Afymetrix Human Genome U133 Plus 2.0 Array限定
・small molecule test限定 ・遺伝子の順位リストを442個作成 GSEAPreranked: GSEAPreranked:入力がm個の遺伝子場合、m個の遺伝子をラ ンダムに選んで比較、入力が有意に上位のあるかを比較 GSEA-InContext GSEA-InContext: :442個の順位リストをつかい、これらのリスト で上位にあるという重み付けをしてm個の遺伝子を選んで比較、 入力が有意に上位にあるかを比較
B(α、β):β関数 β二項分布: バイアスのあるコインがたくさん入った袋がある。そこから一枚コイ ンを一枚抜き出して、n 回投げた。表の出る回数 k が従う分布は? ただし袋の中のコインの表の出る確率 p はベータ分布に従うこと
とする。 α、βの値は442個の遺伝子ランクをつかって、遺伝子ごとに決定 ある遺伝子がr位になる確率:β二項分布 ∫0 1 p(α−1)(1−p)α dp
単純ランダムより実験に基づくほうがランクの期待値の幅(分散) は大きい →順位が高いものは高く、低いものは低くなりやすい。
試験用遺伝子データセット MSigDB :The Hallmarks collection (50クラス) 442遺伝子順位セット(バックグランウンド) →薬剤の標的蛋白で予めグループ化 標的蛋白 臓 器
確 か に こ う す る と 遺 伝
子 セ ッ ト の 有 意 度 は 低 下 論 文 で は こ れ を ア | テ ィ フ ァ ク ト の 減 少 と 解 釈
GSEA-InContextだけで有意になるものもある (バックグラウンドをうまく選べば)
なんで なんでISMB ISMB2018に採択されたの? 2018に採択されたの? 正直、何が面白いのか皆目わかりません。 コレポンはgoogle scholarの引用数が4000ある(2007年から論文 を書き始めた)。実験系の論文が多く、ファーストやコレポンは少な い。 多分、最初の論文から10年でgoogle
scholarの引用数を4000くら いにするのがISMBに論文通すコツなのでは? (僕にはもう実現できないハードルですが、過去のことなので)