Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GSEA-InContext: identifying novel and common pa...
Search
Y-h. Taguchi
August 13, 2018
Science
1
260
GSEA-InContext: identifying novel and common patterns in expression experiments
ISMB2018読み会
https://atnd.org/events/98383
でのプレゼンです。
Y-h. Taguchi
August 13, 2018
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
92
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
82
大学のアウトリーチ活動(中央大学学員(OB)会主催学術講演で講演して)
tagtag
1
46
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
84
マルチオミクスデータ解析のためのカーネルテンソル分解による新しい特徴選択法
tagtag
1
80
学術講演会中央大学学員会大分支部
tagtag
0
120
学術講演会中央大学学員会いわき支部
tagtag
0
130
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
120
学術講演会中央大学学員会八王子支部
tagtag
0
280
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
190
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
900
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
240
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
610
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
4
300
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
120
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
690
第61回コンピュータビジョン勉強会「BioCLIP: A Vision Foundation Model for the Tree of Life」
x_ttyszk
1
1.7k
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
The Incredible Machine: Developer Productivity and the Impact of AI
tomzimmermann
0
570
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
200
Introduction to Image Processing: 2.Frequ
hachama
0
480
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
Why Our Code Smells
bkeepers
PRO
336
57k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
11
540
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
GraphQLとの向き合い方2022年版
quramy
44
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Statistics for Hackers
jakevdp
797
220k
Transcript
ISMB2018読み会 GSEA-InContext: identifying novel and common patterns in expression experiments
Rani K. Powers, Andrew Goodspeed, Harrison Pielke-Lombardo, Aik-Choon Tan and James C. Costello Bioinformatics, 34, 2018, i555–i564 doi: 10.1093/bioinformatics/bty271 報告者: 中央大学理工学部物理学科 田口善弘
論文の目的: 論文の目的: GSEA(Gene Set Enrichment Analysis)は「遺伝子を『何か(例: 発現差の大きさ)の順番』で並べた場合、順番には意味があ る。ある遺伝子セットAが有意に上位に並ぶなら、そのセットに は『何か』の大きさが有意に大きい遺伝子のセットであるとい えるだろう」
というものですが、その場合「有意に上位に並ぶ」の判定をす るときの比較対象(=帰無仮説)が「完全にランダムな並び」 になっている。しかし、遺伝子はお互いに相関しているんだか ら、『何か』と全く無関係じゃない限り、遺伝子セットAはどっち にしろグループで動く(上位に来る)だろう。そうなると「遺伝 子セットAに意味があるか?」という検証にはなっても「順位 付けした『何か』と関係している」と言えなくないか? この問題は解決するには比較対象を完全にランダムな並び じゃなく、いろいろな実験での並びの集合に置き換えないとい けないのでは?
比較対象 比較対象 ・GEOから集めた ・Afymetrix Human Genome U133 Plus 2.0 Array限定
・small molecule test限定 ・遺伝子の順位リストを442個作成 GSEAPreranked: GSEAPreranked:入力がm個の遺伝子場合、m個の遺伝子をラ ンダムに選んで比較、入力が有意に上位のあるかを比較 GSEA-InContext GSEA-InContext: :442個の順位リストをつかい、これらのリスト で上位にあるという重み付けをしてm個の遺伝子を選んで比較、 入力が有意に上位にあるかを比較
B(α、β):β関数 β二項分布: バイアスのあるコインがたくさん入った袋がある。そこから一枚コイ ンを一枚抜き出して、n 回投げた。表の出る回数 k が従う分布は? ただし袋の中のコインの表の出る確率 p はベータ分布に従うこと
とする。 α、βの値は442個の遺伝子ランクをつかって、遺伝子ごとに決定 ある遺伝子がr位になる確率:β二項分布 ∫0 1 p(α−1)(1−p)α dp
単純ランダムより実験に基づくほうがランクの期待値の幅(分散) は大きい →順位が高いものは高く、低いものは低くなりやすい。
試験用遺伝子データセット MSigDB :The Hallmarks collection (50クラス) 442遺伝子順位セット(バックグランウンド) →薬剤の標的蛋白で予めグループ化 標的蛋白 臓 器
確 か に こ う す る と 遺 伝
子 セ ッ ト の 有 意 度 は 低 下 論 文 で は こ れ を ア | テ ィ フ ァ ク ト の 減 少 と 解 釈
GSEA-InContextだけで有意になるものもある (バックグラウンドをうまく選べば)
なんで なんでISMB ISMB2018に採択されたの? 2018に採択されたの? 正直、何が面白いのか皆目わかりません。 コレポンはgoogle scholarの引用数が4000ある(2007年から論文 を書き始めた)。実験系の論文が多く、ファーストやコレポンは少な い。 多分、最初の論文から10年でgoogle
scholarの引用数を4000くら いにするのがISMBに論文通すコツなのでは? (僕にはもう実現できないハードルですが、過去のことなので)