Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GSEA-InContext: identifying novel and common pa...
Search
Y-h. Taguchi
August 13, 2018
Science
1
270
GSEA-InContext: identifying novel and common patterns in expression experiments
ISMB2018読み会
https://atnd.org/events/98383
でのプレゼンです。
Y-h. Taguchi
August 13, 2018
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
120
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
93
大学のアウトリーチ活動(中央大学学員(OB)会主催学術講演で講演して)
tagtag
1
58
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
98
マルチオミクスデータ解析のためのカーネルテンソル分解による新しい特徴選択法
tagtag
1
94
学術講演会中央大学学員会大分支部
tagtag
0
130
学術講演会中央大学学員会いわき支部
tagtag
0
140
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
140
学術講演会中央大学学員会八王子支部
tagtag
0
290
Other Decks in Science
See All in Science
WCS-LA-2024
lcolladotor
0
200
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
300
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
840
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
280
Online Feedback Optimization
floriandoerfler
0
1k
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
PRO
2
760
証明支援系LEANに入門しよう
unaoya
0
790
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
250
حبوب الاجهاض للبيع في الامارات - 00971547952044 - اتصل واتساب
cyt_gcc
0
100
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
150
創薬における機械学習技術について
kanojikajino
16
5.1k
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
120
Featured
See All Featured
The Language of Interfaces
destraynor
157
24k
How to Ace a Technical Interview
jacobian
276
23k
Making Projects Easy
brettharned
116
6.1k
Site-Speed That Sticks
csswizardry
4
470
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
The Cult of Friendly URLs
andyhume
78
6.3k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Building Applications with DynamoDB
mza
94
6.3k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
RailsConf 2023
tenderlove
29
1.1k
Transcript
ISMB2018読み会 GSEA-InContext: identifying novel and common patterns in expression experiments
Rani K. Powers, Andrew Goodspeed, Harrison Pielke-Lombardo, Aik-Choon Tan and James C. Costello Bioinformatics, 34, 2018, i555–i564 doi: 10.1093/bioinformatics/bty271 報告者: 中央大学理工学部物理学科 田口善弘
論文の目的: 論文の目的: GSEA(Gene Set Enrichment Analysis)は「遺伝子を『何か(例: 発現差の大きさ)の順番』で並べた場合、順番には意味があ る。ある遺伝子セットAが有意に上位に並ぶなら、そのセットに は『何か』の大きさが有意に大きい遺伝子のセットであるとい えるだろう」
というものですが、その場合「有意に上位に並ぶ」の判定をす るときの比較対象(=帰無仮説)が「完全にランダムな並び」 になっている。しかし、遺伝子はお互いに相関しているんだか ら、『何か』と全く無関係じゃない限り、遺伝子セットAはどっち にしろグループで動く(上位に来る)だろう。そうなると「遺伝 子セットAに意味があるか?」という検証にはなっても「順位 付けした『何か』と関係している」と言えなくないか? この問題は解決するには比較対象を完全にランダムな並び じゃなく、いろいろな実験での並びの集合に置き換えないとい けないのでは?
比較対象 比較対象 ・GEOから集めた ・Afymetrix Human Genome U133 Plus 2.0 Array限定
・small molecule test限定 ・遺伝子の順位リストを442個作成 GSEAPreranked: GSEAPreranked:入力がm個の遺伝子場合、m個の遺伝子をラ ンダムに選んで比較、入力が有意に上位のあるかを比較 GSEA-InContext GSEA-InContext: :442個の順位リストをつかい、これらのリスト で上位にあるという重み付けをしてm個の遺伝子を選んで比較、 入力が有意に上位にあるかを比較
B(α、β):β関数 β二項分布: バイアスのあるコインがたくさん入った袋がある。そこから一枚コイ ンを一枚抜き出して、n 回投げた。表の出る回数 k が従う分布は? ただし袋の中のコインの表の出る確率 p はベータ分布に従うこと
とする。 α、βの値は442個の遺伝子ランクをつかって、遺伝子ごとに決定 ある遺伝子がr位になる確率:β二項分布 ∫0 1 p(α−1)(1−p)α dp
単純ランダムより実験に基づくほうがランクの期待値の幅(分散) は大きい →順位が高いものは高く、低いものは低くなりやすい。
試験用遺伝子データセット MSigDB :The Hallmarks collection (50クラス) 442遺伝子順位セット(バックグランウンド) →薬剤の標的蛋白で予めグループ化 標的蛋白 臓 器
確 か に こ う す る と 遺 伝
子 セ ッ ト の 有 意 度 は 低 下 論 文 で は こ れ を ア | テ ィ フ ァ ク ト の 減 少 と 解 釈
GSEA-InContextだけで有意になるものもある (バックグラウンドをうまく選べば)
なんで なんでISMB ISMB2018に採択されたの? 2018に採択されたの? 正直、何が面白いのか皆目わかりません。 コレポンはgoogle scholarの引用数が4000ある(2007年から論文 を書き始めた)。実験系の論文が多く、ファーストやコレポンは少な い。 多分、最初の論文から10年でgoogle
scholarの引用数を4000くら いにするのがISMBに論文通すコツなのでは? (僕にはもう実現できないハードルですが、過去のことなので)