Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
GSEA-InContext: identifying novel and common pa...
Search
Y-h. Taguchi
August 13, 2018
Science
1
270
GSEA-InContext: identifying novel and common patterns in expression experiments
ISMB2018読み会
https://atnd.org/events/98383
でのプレゼンです。
Y-h. Taguchi
August 13, 2018
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
ゲノム解析における射影: 特徴選択ツールとしてのテンソル分解と主成分分析を合理化する理論的根拠
tagtag
0
24
知能とはなにかーヒトとAIのあいだー
tagtag
0
65
学術講演会中央大学学員会府中支部
tagtag
0
280
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
200
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
120
大学のアウトリーチ活動(中央大学学員(OB)会主催学術講演で講演して)
tagtag
1
82
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
マルチオミクスデータ解析のためのカーネルテンソル分解による新しい特徴選択法
tagtag
1
130
学術講演会中央大学学員会大分支部
tagtag
0
170
Other Decks in Science
See All in Science
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
400
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
700
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
510
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
220
サイゼミ用因果推論
lw
1
7.4k
MCMCのR-hatは分散分析である
moricup
0
380
Lean4による汎化誤差評価の形式化
milano0017
1
250
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
Explanatory material
yuki1986
0
340
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
510
SciPyDataJapan 2025
schwalbe10
0
240
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
700
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Typedesign – Prime Four
hannesfritz
42
2.7k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Building an army of robots
kneath
306
45k
Unsuck your backbone
ammeep
671
58k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
ISMB2018読み会 GSEA-InContext: identifying novel and common patterns in expression experiments
Rani K. Powers, Andrew Goodspeed, Harrison Pielke-Lombardo, Aik-Choon Tan and James C. Costello Bioinformatics, 34, 2018, i555–i564 doi: 10.1093/bioinformatics/bty271 報告者: 中央大学理工学部物理学科 田口善弘
論文の目的: 論文の目的: GSEA(Gene Set Enrichment Analysis)は「遺伝子を『何か(例: 発現差の大きさ)の順番』で並べた場合、順番には意味があ る。ある遺伝子セットAが有意に上位に並ぶなら、そのセットに は『何か』の大きさが有意に大きい遺伝子のセットであるとい えるだろう」
というものですが、その場合「有意に上位に並ぶ」の判定をす るときの比較対象(=帰無仮説)が「完全にランダムな並び」 になっている。しかし、遺伝子はお互いに相関しているんだか ら、『何か』と全く無関係じゃない限り、遺伝子セットAはどっち にしろグループで動く(上位に来る)だろう。そうなると「遺伝 子セットAに意味があるか?」という検証にはなっても「順位 付けした『何か』と関係している」と言えなくないか? この問題は解決するには比較対象を完全にランダムな並び じゃなく、いろいろな実験での並びの集合に置き換えないとい けないのでは?
比較対象 比較対象 ・GEOから集めた ・Afymetrix Human Genome U133 Plus 2.0 Array限定
・small molecule test限定 ・遺伝子の順位リストを442個作成 GSEAPreranked: GSEAPreranked:入力がm個の遺伝子場合、m個の遺伝子をラ ンダムに選んで比較、入力が有意に上位のあるかを比較 GSEA-InContext GSEA-InContext: :442個の順位リストをつかい、これらのリスト で上位にあるという重み付けをしてm個の遺伝子を選んで比較、 入力が有意に上位にあるかを比較
B(α、β):β関数 β二項分布: バイアスのあるコインがたくさん入った袋がある。そこから一枚コイ ンを一枚抜き出して、n 回投げた。表の出る回数 k が従う分布は? ただし袋の中のコインの表の出る確率 p はベータ分布に従うこと
とする。 α、βの値は442個の遺伝子ランクをつかって、遺伝子ごとに決定 ある遺伝子がr位になる確率:β二項分布 ∫0 1 p(α−1)(1−p)α dp
単純ランダムより実験に基づくほうがランクの期待値の幅(分散) は大きい →順位が高いものは高く、低いものは低くなりやすい。
試験用遺伝子データセット MSigDB :The Hallmarks collection (50クラス) 442遺伝子順位セット(バックグランウンド) →薬剤の標的蛋白で予めグループ化 標的蛋白 臓 器
確 か に こ う す る と 遺 伝
子 セ ッ ト の 有 意 度 は 低 下 論 文 で は こ れ を ア | テ ィ フ ァ ク ト の 減 少 と 解 釈
GSEA-InContextだけで有意になるものもある (バックグラウンドをうまく選べば)
なんで なんでISMB ISMB2018に採択されたの? 2018に採択されたの? 正直、何が面白いのか皆目わかりません。 コレポンはgoogle scholarの引用数が4000ある(2007年から論文 を書き始めた)。実験系の論文が多く、ファーストやコレポンは少な い。 多分、最初の論文から10年でgoogle
scholarの引用数を4000くら いにするのがISMBに論文通すコツなのでは? (僕にはもう実現できないハードルですが、過去のことなので)