tensor decomposition based unsupervised featureextraction to single cell gene expression profile analysis Y-h. Taguchi and Turki Turki Department of Physics, Chuo University/ King Abdulaziz University
described in the following my book published by Springer International, at Sep. 2019. I am glad if the audience can buy it and learn how to apply this method to your own research!
l3k L1 L2 L3 HOSVD (Higher Order Singular Value Decomposition) Extension to tensor….. N M K x ijk ≃∑ l 1 =1 L 1 ∑ l 2 =1 L 2 ∑ l 3 =1 L 3 G(l 1 l 2 l 3 )u l 1 i u l 2 j u l 3 k N: number of genes (i) M: number of samples (j) K: number of tissues (k) xijk: gene expression Example
: expression of gene i of sample j xkj: methylaion of region k of sample j x xijk ijk ≡ ≡ x xij ij ⨉ ⨉ x xkj kj G u l1i u l2j u l3k L1 L2 L3 x ijk N M K x ijk ≃∑ l 1 =1 L 1 ∑ l 2 =1 L 2 ∑ l 3 =1 L 3 G(l 1 l 2 l 3 )u l 1 i u l 2 j u l 3 k
Data set: GSE76381 scRNA-seq of human and mouse mid brain developments i:Genes j,k:cells Purpose of the analysis: Selection of genes associated with mid brain development commonly between human and mouse
: Tensor is generated from product of cells using 13,384 common from product of cells using 13,384 common genes between human and mouse genes between human and mouse xijk = xij × xik ∈ ℝ13384×1977×1907 i:Genes j,k:Cells Size reduction needed because of too huge tensors xjk: decomposed by singular value decomposition vlj: lth human cell singular value vectors vlk: lth mouse cell singular value vectors x jk =∑ i x ijk
δjt v lk =a l ' +∑ t b lt ' δkt δjt,δkt: 1 when cells j,k is measured at t 0 otherwise vlj and vlk with any kind of time dependence are selected with categorical regression(ANOVA)
li ( j)=∑ j v lj x ij u li (k)=∑ k v lk x ik lth human gene singular value vectors lth mouse gene singular value vectors P-values are attributed to gene singular value vectors by χ2 distribution, corrected by BH criterion, genes associated with adjusted P- values less than 0.01 are selected.
127 44 44 Human Mouse Selected genes Less overlaps between human and mouse. No biological terms related to brains are enriched. More comparisons are available in the following paper. Y-h. Taguchi, ICIC2018 (2018) “Principal Component Analysis-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis” https://doi.org/10.1007/978-3-319-95933-7_90
applicable to massive single cell RNA-seq data and is capable to select biologically reasonable genes. Since it is an unsupervised method, it is easy to use and is applicable to wide range of scRNA-seq data set.