Upgrade to PRO for Only $50/Yearโ€”Limited-Time Offer! ๐Ÿ”ฅ

Inverse-Free Online Independent Vector Analysis...

Inverse-Free Online Independent Vector Analysis With Flexible Iterative Sourceย Steering

APSIPA 2022
WedAM1-8

Avatar for Taishi Nakashima

Taishi Nakashima

November 09, 2022
Tweet

More Decks by Taishi Nakashima

Other Decks in Research

Transcript

  1. Inverse-free Online Independent Vector Analysis with Flexible Iterative Source Steering

    APSIPA ASC 2022 WedAM1-8 Taishi Nakashima Nobutaka Ono Tokyo Metropolitan University, Japan. 9 November, 2022
  2. Outline 1/13 Problem โ€ข Online blind source separation ๏ฟฝ Essential

    for real-time applications Methods โ€ข Online auxiliary-function-based independent vector analysis (AuxIVA) ๏ฟฝ Good separation performance Purpose โ€ข To utilize iterative source steering (ISS) for online AuxIVA ๏ฟฝ To update one specific steering vector
  3. Contents 2/13 Introduction Conventional methods Frequency-domain BSS Batch AuxIVA Online

    AuxIVA Iterative source steering Proposed method: Online AuxIVA-ISS Experiment Conclusion
  4. Multichannel blind source separation (BSS) 2/13 Blind Source Separation Observed

    โ€ข To recover source signals from observed signals
  5. Multichannel blind source separation (BSS) 2/13 Observed Estimated Blind Source

    Separation โ€ข To recover source signals from observed signals
  6. Multichannel blind source separation (BSS) 2/13 Observed Estimated Blind Source

    Separation โ€ข To recover source signals from observed signals ๐ŸŽบ๐ŸŽธ๐ŸŽน
  7. Contents 3/13 Introduction Conventional methods Frequency-domain BSS Batch AuxIVA Online

    AuxIVA Iterative source steering Proposed method: Online AuxIVA-ISS Experiment Conclusion
  8. Frequency-domain BSS 3/13 . . . Mix. system Demix. system

    Estimated Observed Source freq. time src. . . . Mixing system Observed ๐’™๐‘“๐‘ก = Mixing matrix ๐‘จ๐‘“ ๐’”๐‘“๐‘ก Demixing system Estimated ๐’š๐‘“๐‘ก = Demixing matrix ๐‘พ๐‘“ ๐’™๐‘“๐‘ก
  9. Frequency-domain BSS 3/13 . . . Mix. system Demix. system

    Estimated Observed Source freq. time src. . . . Mixing system Observed ๐’™๐‘“๐‘ก = Mixing matrix ๐‘จ๐‘“ ๐’”๐‘“๐‘ก Demixing system Estimated ๐’š๐‘“๐‘ก = Demixing matrix ๐‘พ๐‘“ ๐’™๐‘“๐‘ก Goal To estimate ๐‘พ๐‘“ such that ๐’š๐‘“๐‘ก approximates ๐’”๐‘“๐‘ก
  10. Batch vs online 4/13 Estimated Observed Blind Source Separation Batch

    BSS ๏ฟฝ High separation performance ๏ฟฝ Weak against dynamic environment ๏ฟฝ Inappropriate for real-time Online BSS ๏ฟฝ Robust against dynamic environment ๏ฟฝ Limited separation performance ๏ฟฝ Complex parameter tuning
  11. Batch vs online 4/13 Estimated Observed Blind Source Separation Batch

    BSS ๏ฟฝ High separation performance ๏ฟฝ Weak against dynamic environment ๏ฟฝ Inappropriate for real-time Online BSS ๏ฟฝ Robust against dynamic environment ๏ฟฝ Limited separation performance ๏ฟฝ Complex parameter tuning
  12. Batch vs online 4/13 Estimated Observed Blind Source Separation Batch

    BSS ๏ฟฝ High separation performance ๏ฟฝ Weak against dynamic environment ๏ฟฝ Inappropriate for real-time Online BSS ๏ฟฝ Robust against dynamic environment ๏ฟฝ Limited separation performance ๏ฟฝ Complex parameter tuning
  13. Batch vs online 4/13 Estimated Observed Blind Source Separation Batch

    BSS ๏ฟฝ High separation performance ๏ฟฝ Weak against dynamic environment ๏ฟฝ Inappropriate for real-time Online BSS ๏ฟฝ Robust against dynamic environment ๏ฟฝ Limited separation performance ๏ฟฝ Complex parameter tuning
  14. Batch vs online 4/13 Estimated Observed Blind Source Separation Batch

    BSS ๏ฟฝ High separation performance ๏ฟฝ Weak against dynamic environment ๏ฟฝ Inappropriate for real-time Online BSS ๏ฟฝ Robust against dynamic environment ๏ฟฝ Limited separation performance ๏ฟฝ Complex parameter tuning
  15. Batch AuxIVA [Ono2011] 5/13 Auxiliary function for IVA min. ๐ฝ+({๐‘พ๐‘“

    }๐‘“ ) = โˆ‘ ๐‘“ [โˆ’2 log|det Parameter ๐‘พ๐‘“ | + โˆ‘ ๐‘˜ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ Parameter ๐’˜๐‘˜๐‘“ ] where ๐‘ผ๐‘˜๐‘“ = 1 ๐‘‡ ๐‘‡ โˆ‘ ๐‘ก=1 ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก 2๐‘Ÿ๐‘˜๐‘“๐‘ก
  16. Batch AuxIVA [Ono2011] 5/13 Auxiliary function for IVA min. ๐ฝ+({๐‘พ๐‘“

    }๐‘“ ) = โˆ‘ ๐‘“ [โˆ’2 log|det Parameter ๐‘พ๐‘“ | + โˆ‘ ๐‘˜ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ Parameter ๐’˜๐‘˜๐‘“ ] where ๐‘ผ๐‘˜๐‘“ = 1 ๐‘‡ ๐‘‡ โˆ‘ ๐‘ก=1 ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก 2๐‘Ÿ๐‘˜๐‘“๐‘ก Iterative projection (IP) [Ono2011] โ€ข To minimize ๐ฝ+ w.r.t. ๐‘พ๐‘“ ๐’˜๐‘˜๐‘“ โ† (๐‘พ๐‘“ ๐‘ผ๐‘˜๐‘“ )โˆ’1๐’†๐‘˜ ๐’˜๐‘˜๐‘“ โ† ๐’˜๐‘˜๐‘“ โˆš๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“
  17. Batch AuxIVA [Ono2011] 5/13 Auxiliary function for IVA min. ๐ฝ+({๐‘พ๐‘“

    }๐‘“ ) = โˆ‘ ๐‘“ [โˆ’2 log|det ๐‘พ๐‘“ | + โˆ‘ ๐‘˜ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ ] where ๐‘ผ๐‘˜๐‘“ = 1 ๐‘‡ ๐‘‡ โˆ‘ ๐‘ก=1 ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก 2๐‘Ÿ๐‘˜๐‘“๐‘ก Iterative projection (IP) [Ono2011] โ€ข To minimize ๐ฝ+ w.r.t. ๐‘พ๐‘“ ๐’˜๐‘˜๐‘“ โ† (๐‘พ๐‘“ ๐‘ผ๐‘˜๐‘“ )โˆ’1๐’†๐‘˜ ๐’˜๐‘˜๐‘“ โ† ๐’˜๐‘˜๐‘“ โˆš๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ ๏ฟฝ Requires observed signals ๐’™๐‘“๐‘ก for all ๐‘ก to calculate ๐‘ผ๐‘˜๐‘“
  18. Online AuxIVA [Taniguchi+2014] 6/13 Modification of signal model ๐’™๐‘“๐‘ก =

    Time-variant ๐‘จ๐‘“๐‘ก ๐’”๐‘“๐‘ก ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก Incremental update of covariance matrices ๐‘ผ๐‘˜๐‘“๐‘ก โ† Forgetting factor (0 < ๐›ผ โ‰ค 1) ๐›ผ Past data ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) Current data 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก
  19. Online AuxIVA [Taniguchi+2014] 6/13 Modification of signal model ๐’™๐‘“๐‘ก =

    Time-variant ๐‘จ๐‘“๐‘ก ๐’”๐‘“๐‘ก ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก Incremental update of covariance matrices ๐‘ผ๐‘˜๐‘“๐‘ก โ† Forgetting factor (0 < ๐›ผ โ‰ค 1) ๐›ผ Past data ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) Current data 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก Motivation โ€ข To update ๐‘พ๐‘“๐‘ก efficiently โˆ˜ ๐‘พ๐‘“๐‘ก should converge after sufficient frames
  20. Online AuxIVA [Taniguchi+2014] 6/13 Modification of signal model ๐’™๐‘“๐‘ก =

    Time-variant ๐‘จ๐‘“๐‘ก ๐’”๐‘“๐‘ก ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก Incremental update of covariance matrices ๐‘ผ๐‘˜๐‘“๐‘ก โ† Forgetting factor (0 < ๐›ผ โ‰ค 1) ๐›ผ Past data ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) Current data 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก Motivation โ€ข To update ๐‘พ๐‘“๐‘ก efficiently โˆ˜ ๐‘พ๐‘“๐‘ก should converge after sufficient frames ๏ฟฝ Exploit property of iterative source steering
  21. Iterative source steering (ISS) [Scheibler+2020] 7/13 โ€ข Update rule of

    ๐‘พ๐‘“ using elementary row operations ๐‘พ๐‘“ โ† ๐‘พ๐‘“ โˆ’ ๐’—๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“ ๐‘ฃ๐‘š๐‘˜๐‘“ = โŽง { โŽจ { โŽฉ ๐’˜H ๐‘š๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜ ๐‘˜๐‘“ (if ๐‘š โ‰  ๐‘˜) 1 โˆ’ (๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ )โˆ’1 2 (if ๐‘š = ๐‘˜) ๏ฟฝ Inverse-free
  22. Intuitive interpretation of ISS 8/13 โ€ข Equivalent to updates of

    steering vectors ๐’‚๐‘˜๐‘“ [Scheibler+2020] ๐’‚๐‘˜๐‘“ โ† 1 1โˆ’๐‘ฃ๐‘˜๐‘˜๐‘“ (๐’‚๐‘˜๐‘“ + โˆ‘ ๐‘šโ‰ ๐‘˜ ๐‘ฃ๐‘š๐‘˜๐‘“ ๐’‚๐‘š๐‘“ )
  23. Intuitive interpretation of ISS 8/13 โ€ข Equivalent to updates of

    steering vectors ๐’‚๐‘˜๐‘“ [Scheibler+2020] ๐’‚๐‘˜๐‘“ โ† 1 1โˆ’๐‘ฃ๐‘˜๐‘˜๐‘“ (๐’‚๐‘˜๐‘“ + โˆ‘ ๐‘šโ‰ ๐‘˜ ๐‘ฃ๐‘š๐‘˜๐‘“ ๐’‚๐‘š๐‘“ )
  24. Intuitive interpretation of ISS 8/13 โ€ข Equivalent to updates of

    steering vectors ๐’‚๐‘˜๐‘“ [Scheibler+2020] ๐’‚๐‘˜๐‘“ โ† 1 1โˆ’๐‘ฃ๐‘˜๐‘˜๐‘“ (๐’‚๐‘˜๐‘“ + โˆ‘ ๐‘šโ‰ ๐‘˜ ๐‘ฃ๐‘š๐‘˜๐‘“ ๐’‚๐‘š๐‘“ ) ๏ฟฝ Example: after source ๐‘ 1๐‘“๐‘ก moves...
  25. Intuitive interpretation of ISS 8/13 โ€ข Equivalent to updates of

    steering vectors ๐’‚๐‘˜๐‘“ [Scheibler+2020] ๐’‚๐‘˜๐‘“ โ† 1 1โˆ’๐‘ฃ๐‘˜๐‘˜๐‘“ (๐’‚๐‘˜๐‘“ + โˆ‘ ๐‘šโ‰ ๐‘˜ ๐‘ฃ๐‘š๐‘˜๐‘“ ๐’‚๐‘š๐‘“ ) ๏ฟฝ Example: after source ๐‘ 1๐‘“๐‘ก moves... ๏ฟฝ IP: update ๐’˜2๐‘“๐‘ก , ๐’˜3๐‘“๐‘ก , โ€ฆ
  26. Intuitive interpretation of ISS 8/13 โ€ข Equivalent to updates of

    steering vectors ๐’‚๐‘˜๐‘“ [Scheibler+2020] ๐’‚๐‘˜๐‘“ โ† 1 1โˆ’๐‘ฃ๐‘˜๐‘˜๐‘“ (๐’‚๐‘˜๐‘“ + โˆ‘ ๐‘šโ‰ ๐‘˜ ๐‘ฃ๐‘š๐‘˜๐‘“ ๐’‚๐‘š๐‘“ ) ๏ฟฝ Example: after source ๐‘ 1๐‘“๐‘ก moves... ๏ฟฝ IP: update ๐’˜2๐‘“๐‘ก , ๐’˜3๐‘“๐‘ก , โ€ฆ ๏ฟฝ ISS: update only ๐’‚1๐‘“๐‘ก
  27. Contents 9/13 Introduction Conventional methods Frequency-domain BSS Batch AuxIVA Online

    AuxIVA Iterative source steering Proposed method: Online AuxIVA-ISS Experiment Conclusion
  28. Online AuxIVA with ISSPROPOSED 9/13 for ๐‘ก = 1, โ€ฆ

    , ๐‘‡ do ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“(๐‘กโˆ’1) (โˆ€๐‘“) for it = 1, โ€ฆ , ๐‘it do for ๐‘˜ = 1, โ€ฆ , ๐พ do ๐‘Ÿ๐‘˜๐‘ก โ† โˆšโˆ‘ ๐‘“ |๐’˜H ๐‘˜๐‘“๐‘ก ๐’™๐‘“๐‘ก |2 ๐‘ผ๐‘˜๐‘“๐‘ก โ† ๐›ผ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก (โˆ€๐‘“) for ๐‘˜ โˆˆ ๐’ฆ do for ๐‘š = 1, โ€ฆ , ๐พ do ๐‘ฃ๐‘š๐‘˜๐‘“ โ† โŽง { โŽจ { โŽฉ ๐’˜H ๐‘š๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜ ๐‘˜๐‘“ if ๐‘š โ‰  ๐‘˜ 1 โˆ’ (๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ )โˆ’1 2 if ๐‘š = ๐‘˜ (โˆ€๐‘“) ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“๐‘ก โˆ’ ๐’—๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“๐‘ก (โˆ€๐‘“) ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก (โˆ€๐‘“)
  29. Online AuxIVA with ISSPROPOSED 9/13 for ๐‘ก = 1, โ€ฆ

    , ๐‘‡ do ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“(๐‘กโˆ’1) (โˆ€๐‘“) for it = 1, โ€ฆ , ๐‘it do for ๐‘˜ = 1, โ€ฆ , ๐พ do ๐‘Ÿ๐‘˜๐‘ก โ† โˆšโˆ‘ ๐‘“ |๐’˜H ๐‘˜๐‘“๐‘ก ๐’™๐‘“๐‘ก |2 ๐‘ผ๐‘˜๐‘“๐‘ก โ† ๐›ผ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก (โˆ€๐‘“) for Source index set to be udpated ๐‘˜ โˆˆ ๐’ฆ do for ๐‘š = 1, โ€ฆ , ๐พ do ๐‘ฃ๐‘š๐‘˜๐‘“ โ† โŽง { โŽจ { โŽฉ ๐’˜H ๐‘š๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜ ๐‘˜๐‘“ if ๐‘š โ‰  ๐‘˜ 1 โˆ’ (๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ )โˆ’1 2 if ๐‘š = ๐‘˜ (โˆ€๐‘“) ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“๐‘ก โˆ’ ๐’—๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“๐‘ก (โˆ€๐‘“) ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก (โˆ€๐‘“)
  30. Online AuxIVA with ISSPROPOSED 9/13 for ๐‘ก = 1, โ€ฆ

    , ๐‘‡ do ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“(๐‘กโˆ’1) (โˆ€๐‘“) for it = 1, โ€ฆ , ๐‘it do for ๐‘˜ = 1, โ€ฆ , ๐พ do ๐‘Ÿ๐‘˜๐‘ก โ† โˆšโˆ‘ ๐‘“ |๐’˜H ๐‘˜๐‘“๐‘ก ๐’™๐‘“๐‘ก |2 ๐‘ผ๐‘˜๐‘“๐‘ก โ† ๐›ผ๐‘ผ๐‘˜๐‘“(๐‘กโˆ’1) + (1 โˆ’ ๐›ผ) 1 2๐‘Ÿ๐‘˜๐‘ก ๐’™๐‘“๐‘ก ๐’™H ๐‘“๐‘ก (โˆ€๐‘“) for Source index set to be udpated Example: Until ๐‘พ๐‘“๐‘ก converge ๐’ฆ = {1, โ€ฆ , ๐พ} After ๐‘พ๐‘“๐‘ก converge ๐’ฆ = โˆ… When source ๐‘™ moves ๐’ฆ = {๐‘™} ๐‘˜ โˆˆ ๐’ฆ do for ๐‘š = 1, โ€ฆ , ๐พ do ๐‘ฃ๐‘š๐‘˜๐‘“ โ† โŽง { โŽจ { โŽฉ ๐’˜H ๐‘š๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘š๐‘“ ๐’˜ ๐‘˜๐‘“ if ๐‘š โ‰  ๐‘˜ 1 โˆ’ (๐’˜H ๐‘˜๐‘“ ๐‘ผ๐‘˜๐‘“ ๐’˜๐‘˜๐‘“ )โˆ’1 2 if ๐‘š = ๐‘˜ (โˆ€๐‘“) ๐‘พ๐‘“๐‘ก โ† ๐‘พ๐‘“๐‘ก โˆ’ ๐’—๐‘˜๐‘“ ๐’˜H ๐‘˜๐‘“๐‘ก (โˆ€๐‘“) ๐’š๐‘“๐‘ก = ๐‘พ๐‘“๐‘ก ๐’™๐‘“๐‘ก (โˆ€๐‘“)
  31. Contents 10/13 Introduction Conventional methods Frequency-domain BSS Batch AuxIVA Online

    AuxIVA Iterative source steering Proposed method: Online AuxIVA-ISS Experiment Conclusion
  32. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved)
  33. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ` Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved) 1. Copy source 3 to source 3โ€ฒ
  34. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ` Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved) 1. Copy source 3 to source 3โ€ฒ 2. Cut second half of source 3 Cut first half of source 3โ€ฒ
  35. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ` Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved) 1. Copy source 3 to source 3โ€ฒ 2. Cut second half of source 3 Cut first half of source 3โ€ฒ ๏ฟฝ Instant movement of the source 3
  36. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ` Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved) 1. Copy source 3 to source 3โ€ฒ 2. Cut second half of source 3 Cut first half of source 3โ€ฒ ๏ฟฝ Instant movement of the source 3 Methods Name Target source indices ๐’ฆ Before move After move ๐Ÿ†• ISS-all {1, 2, 3} {1, 2, 3} ๐Ÿ†• ISS-one {1, 2, 3} {3} IP-all {1, 2, 3} {1, 2, 3} IP-one {1, 2, 3} {3}
  37. Setup 10/13 Room layout Width = ๏ฟฝ.๏ฟฝ m Depth =

    ๏ฟฝ.๏ฟฝ m ๏ฟฝ ๏ฟฝ ๏ฟฝ ๏ฟฝ` Height = ๏ฟฝ.๏ฟฝ๏ฟฝ m Microphones Source (๏ฌxed) Source (moved) 1. Copy source 3 to source 3โ€ฒ 2. Cut second half of source 3 Cut first half of source 3โ€ฒ ๏ฟฝ Instant movement of the source 3 Methods Name Target source indices ๐’ฆ Before move After move ๐Ÿ†• ISS-all {1, 2, 3} {1, 2, 3} ๐Ÿ†• ISS-one {1, 2, 3} {3} IP-all {1, 2, 3} {1, 2, 3} IP-one {1, 2, 3} {3} Note When and which source moves is known as an oracle in this experiment
  38. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 SegSDR improvement (dB) $I $I $I $I $I $I โ€ข Segmental SDR improvements by channels
  39. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I โ€ข Vertical dashed line indicates movement of source 3
  40. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I โ€ข Before source 3 moved: update demixing matrices for all source indices
  41. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I โ€ข After source 3 moved: ISS-one updates only ๐’‚3๐‘“ , IP-one updates only ๐’˜3๐‘“
  42. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I โ€ข Degraded separation performance due to moving source
  43. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I โ€ข Steadily improved thanks to online updates
  44. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I ๏ฟฝ ISS-one : almost the same performance as ISS-all with less updates
  45. Separation performance 11/13 0 20 ISS-all ISS-one IP-all IP-one 0

    20 0 5 10 15 20 25 30 Segment index 0 20 Source 3 moved SegSDR improvement (dB) $I $I $I $I $I $I ๏ฟฝ ISS-one : higher performance than IP-one
  46. Runtime 12/13 IP-all ISS-all ISS-one 0 2 4 6 8

    10 12 Runtime (s) 11.54 11.00 8.66 ๏ฟฝ ISS-one was faster than IP-all
  47. Contents 13/13 Introduction Conventional methods Frequency-domain BSS Batch AuxIVA Online

    AuxIVA Iterative source steering Proposed method: Online AuxIVA-ISS Experiment Conclusion
  48. Conclusion 13/13 Summary โ€ข New online AuxIVA with iterative source

    steering (ISS) ๏ฟฝ Good separation performance under dynamic environment ๏ฟฝ Efficient update when the single source moves
  49. Conclusion 13/13 Summary โ€ข New online AuxIVA with iterative source

    steering (ISS) ๏ฟฝ Good separation performance under dynamic environment ๏ฟฝ Efficient update when the single source moves Future work โ€ข Automatic detection of moveing sources โ€ข Efficient forgetting factor tuning โ€ข Efficient update rule of ISS
  50. References i [Ono2011] N. Ono, โ€œStable and fast update rules

    for independent vector analysis based on auxiliary function technique,โ€ in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 189โ€“192, 2011. [Scheibler+2020] R. Scheibler and N. Ono, โ€œFast and stable blind source separation with rank-1 updates,โ€ in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020. [Taniguchi+2014] T. Taniguchi, N. Ono, A. Kawamura, and S. Sagayama, โ€œAn auxiliary-function approach to online independent vector analysis for real-time blind source separation,โ€ in Proceedings of Hands-Free Speech Communication and Microphone Arrays (HSCMA), pp. 107โ€“111, May 2014. Thank you!