Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Inverse-Free Online Independent Vector Analysis With Flexible Iterative Source Steering

Inverse-Free Online Independent Vector Analysis With Flexible Iterative Source Steering

APSIPA 2022
WedAM1-8

Taishi Nakashima

November 09, 2022
Tweet

More Decks by Taishi Nakashima

Other Decks in Research

Transcript

  1. Inverse-free Online Independent Vector Analysis with
    Flexible Iterative Source Steering
    APSIPA ASC 2022
    WedAM1-8
    Taishi Nakashima Nobutaka Ono
    Tokyo Metropolitan University, Japan.
    9 November, 2022

    View Slide

  2. Outline 1/13
    Problem
    • Online blind source separation
    � Essential for real-time applications
    Methods
    • Online auxiliary-function-based independent vector analysis (AuxIVA)
    � Good separation performance
    Purpose
    • To utilize iterative source steering (ISS) for online AuxIVA
    � To update one specific steering vector

    View Slide

  3. Contents 2/13
    Introduction
    Conventional methods
    Frequency-domain BSS
    Batch AuxIVA
    Online AuxIVA
    Iterative source steering
    Proposed method: Online AuxIVA-ISS
    Experiment
    Conclusion

    View Slide

  4. Multichannel blind source separation (BSS) 2/13
    Blind
    Source
    Separation
    • To recover source signals from observed signals

    View Slide

  5. Multichannel blind source separation (BSS) 2/13
    Blind
    Source
    Separation
    • To recover source signals from observed signals

    View Slide

  6. Multichannel blind source separation (BSS) 2/13
    Blind
    Source
    Separation
    • To recover source signals from observed signals

    View Slide

  7. Multichannel blind source separation (BSS) 2/13
    Blind
    Source
    Separation
    Observed
    • To recover source signals from observed signals

    View Slide

  8. Multichannel blind source separation (BSS) 2/13
    Observed Estimated
    Blind
    Source
    Separation
    • To recover source signals from observed signals

    View Slide

  9. Multichannel blind source separation (BSS) 2/13
    Observed Estimated
    Blind
    Source
    Separation
    • To recover source signals from observed signals
    🎺🎸🎹

    View Slide

  10. Contents 3/13
    Introduction
    Conventional methods
    Frequency-domain BSS
    Batch AuxIVA
    Online AuxIVA
    Iterative source steering
    Proposed method: Online AuxIVA-ISS
    Experiment
    Conclusion

    View Slide

  11. Frequency-domain BSS 3/13
    .
    .
    .
    Mix. system Demix. system Estimated
    Observed
    Source
    freq.
    time
    src.
    .
    .
    .
    Mixing system
    Observed
    𝒙𝑓𝑡
    =
    Mixing matrix
    𝑨𝑓
    𝒔𝑓𝑡
    Demixing system
    Estimated
    𝒚𝑓𝑡
    =
    Demixing matrix
    𝑾𝑓
    𝒙𝑓𝑡

    View Slide

  12. Frequency-domain BSS 3/13
    .
    .
    .
    Mix. system Demix. system Estimated
    Observed
    Source
    freq.
    time
    src.
    .
    .
    .
    Mixing system
    Observed
    𝒙𝑓𝑡
    =
    Mixing matrix
    𝑨𝑓
    𝒔𝑓𝑡
    Demixing system
    Estimated
    𝒚𝑓𝑡
    =
    Demixing matrix
    𝑾𝑓
    𝒙𝑓𝑡
    Goal
    To estimate 𝑾𝑓
    such that 𝒚𝑓𝑡
    approximates 𝒔𝑓𝑡

    View Slide

  13. Batch vs online 4/13
    Estimated
    Observed
    Blind
    Source
    Separation
    Batch BSS
    � High separation performance
    � Weak against dynamic environment
    � Inappropriate for real-time
    Online BSS
    � Robust against dynamic environment
    � Limited separation performance
    � Complex parameter tuning

    View Slide

  14. Batch vs online 4/13
    Estimated
    Observed
    Blind
    Source
    Separation
    Batch BSS
    � High separation performance
    � Weak against dynamic environment
    � Inappropriate for real-time
    Online BSS
    � Robust against dynamic environment
    � Limited separation performance
    � Complex parameter tuning

    View Slide

  15. Batch vs online 4/13
    Estimated
    Observed
    Blind
    Source
    Separation
    Batch BSS
    � High separation performance
    � Weak against dynamic environment
    � Inappropriate for real-time
    Online BSS
    � Robust against dynamic environment
    � Limited separation performance
    � Complex parameter tuning

    View Slide

  16. Batch vs online 4/13
    Estimated
    Observed
    Blind
    Source
    Separation
    Batch BSS
    � High separation performance
    � Weak against dynamic environment
    � Inappropriate for real-time
    Online BSS
    � Robust against dynamic environment
    � Limited separation performance
    � Complex parameter tuning

    View Slide

  17. Batch vs online 4/13
    Estimated
    Observed
    Blind
    Source
    Separation
    Batch BSS
    � High separation performance
    � Weak against dynamic environment
    � Inappropriate for real-time
    Online BSS
    � Robust against dynamic environment
    � Limited separation performance
    � Complex parameter tuning

    View Slide

  18. Batch AuxIVA [Ono2011]
    5/13
    Auxiliary function for IVA
    min. 𝐽+({𝑾𝑓
    }𝑓
    ) = ∑
    𝑓
    [−2 log|det
    Parameter
    𝑾𝑓
    | + ∑
    𝑘
    𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    Parameter
    𝒘𝑘𝑓
    ]
    where 𝑼𝑘𝑓
    =
    1
    𝑇
    𝑇

    𝑡=1
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    2𝑟𝑘𝑓𝑡

    View Slide

  19. Batch AuxIVA [Ono2011]
    5/13
    Auxiliary function for IVA
    min. 𝐽+({𝑾𝑓
    }𝑓
    ) = ∑
    𝑓
    [−2 log|det
    Parameter
    𝑾𝑓
    | + ∑
    𝑘
    𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    Parameter
    𝒘𝑘𝑓
    ]
    where 𝑼𝑘𝑓
    =
    1
    𝑇
    𝑇

    𝑡=1
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    2𝑟𝑘𝑓𝑡
    Iterative projection (IP) [Ono2011]
    • To minimize 𝐽+ w.r.t. 𝑾𝑓
    𝒘𝑘𝑓
    ← (𝑾𝑓
    𝑼𝑘𝑓
    )−1𝒆𝑘
    𝒘𝑘𝑓

    𝒘𝑘𝑓
    √𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓

    View Slide

  20. Batch AuxIVA [Ono2011]
    5/13
    Auxiliary function for IVA
    min. 𝐽+({𝑾𝑓
    }𝑓
    ) = ∑
    𝑓
    [−2 log|det 𝑾𝑓
    | + ∑
    𝑘
    𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    ]
    where 𝑼𝑘𝑓
    =
    1
    𝑇
    𝑇

    𝑡=1
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    2𝑟𝑘𝑓𝑡
    Iterative projection (IP) [Ono2011]
    • To minimize 𝐽+ w.r.t. 𝑾𝑓
    𝒘𝑘𝑓
    ← (𝑾𝑓
    𝑼𝑘𝑓
    )−1𝒆𝑘
    𝒘𝑘𝑓

    𝒘𝑘𝑓
    √𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    � Requires observed signals 𝒙𝑓𝑡
    for all 𝑡 to calculate 𝑼𝑘𝑓

    View Slide

  21. Online AuxIVA [Taniguchi+2014]
    6/13
    Modification of signal model
    𝒙𝑓𝑡
    =
    Time-variant
    𝑨𝑓𝑡
    𝒔𝑓𝑡
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    Incremental update of covariance matrices
    𝑼𝑘𝑓𝑡

    Forgetting factor (0 < 𝛼 ≤ 1)
    𝛼
    Past data
    𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼)
    Current data
    1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡

    View Slide

  22. Online AuxIVA [Taniguchi+2014]
    6/13
    Modification of signal model
    𝒙𝑓𝑡
    =
    Time-variant
    𝑨𝑓𝑡
    𝒔𝑓𝑡
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    Incremental update of covariance matrices
    𝑼𝑘𝑓𝑡

    Forgetting factor (0 < 𝛼 ≤ 1)
    𝛼
    Past data
    𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼)
    Current data
    1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    Motivation
    • To update 𝑾𝑓𝑡
    efficiently
    ∘ 𝑾𝑓𝑡
    should converge after sufficient frames

    View Slide

  23. Online AuxIVA [Taniguchi+2014]
    6/13
    Modification of signal model
    𝒙𝑓𝑡
    =
    Time-variant
    𝑨𝑓𝑡
    𝒔𝑓𝑡
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    Incremental update of covariance matrices
    𝑼𝑘𝑓𝑡

    Forgetting factor (0 < 𝛼 ≤ 1)
    𝛼
    Past data
    𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼)
    Current data
    1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    Motivation
    • To update 𝑾𝑓𝑡
    efficiently
    ∘ 𝑾𝑓𝑡
    should converge after sufficient frames
    � Exploit property of iterative source steering

    View Slide

  24. Iterative source steering (ISS) [Scheibler+2020]
    7/13
    • Update rule of 𝑾𝑓
    using elementary row operations
    𝑾𝑓
    ← 𝑾𝑓
    − 𝒗𝑘𝑓
    𝒘H
    𝑘𝑓
    𝑣𝑚𝑘𝑓
    =

    {

    {

    𝒘H
    𝑚𝑓
    𝑼𝑚𝑓
    𝒘𝑘𝑓
    𝒘H
    𝑘𝑓
    𝑼𝑚𝑓
    𝒘
    𝑘𝑓
    (if 𝑚 ≠ 𝑘)
    1 − (𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    )−1
    2 (if 𝑚 = 𝑘)
    � Inverse-free

    View Slide

  25. Intuitive interpretation of ISS 8/13
    • Equivalent to updates of steering vectors 𝒂𝑘𝑓
    [Scheibler+2020]
    𝒂𝑘𝑓
    ← 1
    1−𝑣𝑘𝑘𝑓
    (𝒂𝑘𝑓
    + ∑
    𝑚≠𝑘
    𝑣𝑚𝑘𝑓
    𝒂𝑚𝑓
    )

    View Slide

  26. Intuitive interpretation of ISS 8/13
    • Equivalent to updates of steering vectors 𝒂𝑘𝑓
    [Scheibler+2020]
    𝒂𝑘𝑓
    ← 1
    1−𝑣𝑘𝑘𝑓
    (𝒂𝑘𝑓
    + ∑
    𝑚≠𝑘
    𝑣𝑚𝑘𝑓
    𝒂𝑚𝑓
    )

    View Slide

  27. Intuitive interpretation of ISS 8/13
    • Equivalent to updates of steering vectors 𝒂𝑘𝑓
    [Scheibler+2020]
    𝒂𝑘𝑓
    ← 1
    1−𝑣𝑘𝑘𝑓
    (𝒂𝑘𝑓
    + ∑
    𝑚≠𝑘
    𝑣𝑚𝑘𝑓
    𝒂𝑚𝑓
    )
    � Example: after source 𝑠1𝑓𝑡
    moves...

    View Slide

  28. Intuitive interpretation of ISS 8/13
    • Equivalent to updates of steering vectors 𝒂𝑘𝑓
    [Scheibler+2020]
    𝒂𝑘𝑓
    ← 1
    1−𝑣𝑘𝑘𝑓
    (𝒂𝑘𝑓
    + ∑
    𝑚≠𝑘
    𝑣𝑚𝑘𝑓
    𝒂𝑚𝑓
    )
    � Example: after source 𝑠1𝑓𝑡
    moves...
    � IP: update 𝒘2𝑓𝑡
    , 𝒘3𝑓𝑡
    , …

    View Slide

  29. Intuitive interpretation of ISS 8/13
    • Equivalent to updates of steering vectors 𝒂𝑘𝑓
    [Scheibler+2020]
    𝒂𝑘𝑓
    ← 1
    1−𝑣𝑘𝑘𝑓
    (𝒂𝑘𝑓
    + ∑
    𝑚≠𝑘
    𝑣𝑚𝑘𝑓
    𝒂𝑚𝑓
    )
    � Example: after source 𝑠1𝑓𝑡
    moves...
    � IP: update 𝒘2𝑓𝑡
    , 𝒘3𝑓𝑡
    , …
    � ISS: update only 𝒂1𝑓𝑡

    View Slide

  30. Contents 9/13
    Introduction
    Conventional methods
    Frequency-domain BSS
    Batch AuxIVA
    Online AuxIVA
    Iterative source steering
    Proposed method: Online AuxIVA-ISS
    Experiment
    Conclusion

    View Slide

  31. Online AuxIVA with ISSPROPOSED
    9/13
    for 𝑡 = 1, … , 𝑇 do
    𝑾𝑓𝑡
    ← 𝑾𝑓(𝑡−1)
    (∀𝑓)
    for it = 1, … , 𝑁it
    do
    for 𝑘 = 1, … , 𝐾 do
    𝑟𝑘𝑡
    ← √∑
    𝑓
    |𝒘H
    𝑘𝑓𝑡
    𝒙𝑓𝑡
    |2
    𝑼𝑘𝑓𝑡
    ← 𝛼𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼) 1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    (∀𝑓)
    for 𝑘 ∈ 𝒦 do
    for 𝑚 = 1, … , 𝐾 do
    𝑣𝑚𝑘𝑓


    {

    {

    𝒘H
    𝑚𝑓
    𝑼𝑚𝑓
    𝒘𝑘𝑓
    𝒘H
    𝑘𝑓
    𝑼𝑚𝑓
    𝒘
    𝑘𝑓
    if 𝑚 ≠ 𝑘
    1 − (𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    )−1
    2 if 𝑚 = 𝑘
    (∀𝑓)
    𝑾𝑓𝑡
    ← 𝑾𝑓𝑡
    − 𝒗𝑘𝑓
    𝒘H
    𝑘𝑓𝑡
    (∀𝑓)
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    (∀𝑓)

    View Slide

  32. Online AuxIVA with ISSPROPOSED
    9/13
    for 𝑡 = 1, … , 𝑇 do
    𝑾𝑓𝑡
    ← 𝑾𝑓(𝑡−1)
    (∀𝑓)
    for it = 1, … , 𝑁it
    do
    for 𝑘 = 1, … , 𝐾 do
    𝑟𝑘𝑡
    ← √∑
    𝑓
    |𝒘H
    𝑘𝑓𝑡
    𝒙𝑓𝑡
    |2
    𝑼𝑘𝑓𝑡
    ← 𝛼𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼) 1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    (∀𝑓)
    for
    Source index set to be udpated
    𝑘 ∈ 𝒦 do
    for 𝑚 = 1, … , 𝐾 do
    𝑣𝑚𝑘𝑓


    {

    {

    𝒘H
    𝑚𝑓
    𝑼𝑚𝑓
    𝒘𝑘𝑓
    𝒘H
    𝑘𝑓
    𝑼𝑚𝑓
    𝒘
    𝑘𝑓
    if 𝑚 ≠ 𝑘
    1 − (𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    )−1
    2 if 𝑚 = 𝑘
    (∀𝑓)
    𝑾𝑓𝑡
    ← 𝑾𝑓𝑡
    − 𝒗𝑘𝑓
    𝒘H
    𝑘𝑓𝑡
    (∀𝑓)
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    (∀𝑓)

    View Slide

  33. Online AuxIVA with ISSPROPOSED
    9/13
    for 𝑡 = 1, … , 𝑇 do
    𝑾𝑓𝑡
    ← 𝑾𝑓(𝑡−1)
    (∀𝑓)
    for it = 1, … , 𝑁it
    do
    for 𝑘 = 1, … , 𝐾 do
    𝑟𝑘𝑡
    ← √∑
    𝑓
    |𝒘H
    𝑘𝑓𝑡
    𝒙𝑓𝑡
    |2
    𝑼𝑘𝑓𝑡
    ← 𝛼𝑼𝑘𝑓(𝑡−1)
    + (1 − 𝛼) 1
    2𝑟𝑘𝑡
    𝒙𝑓𝑡
    𝒙H
    𝑓𝑡
    (∀𝑓)
    for
    Source index set to be udpated
    Example:
    Until 𝑾𝑓𝑡
    converge 𝒦 = {1, … , 𝐾}
    After 𝑾𝑓𝑡
    converge 𝒦 = ∅
    When source 𝑙 moves 𝒦 = {𝑙}
    𝑘 ∈ 𝒦 do
    for 𝑚 = 1, … , 𝐾 do
    𝑣𝑚𝑘𝑓


    {

    {

    𝒘H
    𝑚𝑓
    𝑼𝑚𝑓
    𝒘𝑘𝑓
    𝒘H
    𝑘𝑓
    𝑼𝑚𝑓
    𝒘
    𝑘𝑓
    if 𝑚 ≠ 𝑘
    1 − (𝒘H
    𝑘𝑓
    𝑼𝑘𝑓
    𝒘𝑘𝑓
    )−1
    2 if 𝑚 = 𝑘
    (∀𝑓)
    𝑾𝑓𝑡
    ← 𝑾𝑓𝑡
    − 𝒗𝑘𝑓
    𝒘H
    𝑘𝑓𝑡
    (∀𝑓)
    𝒚𝑓𝑡
    = 𝑾𝑓𝑡
    𝒙𝑓𝑡
    (∀𝑓)

    View Slide

  34. Contents 10/13
    Introduction
    Conventional methods
    Frequency-domain BSS
    Batch AuxIVA
    Online AuxIVA
    Iterative source steering
    Proposed method: Online AuxIVA-ISS
    Experiment
    Conclusion

    View Slide

  35. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)

    View Slide

  36. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    �`
    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)
    1. Copy source 3 to source 3′

    View Slide

  37. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    �`
    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)
    1. Copy source 3 to source 3′
    2. Cut second half of source 3
    Cut first half of source 3′

    View Slide

  38. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    �`
    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)
    1. Copy source 3 to source 3′
    2. Cut second half of source 3
    Cut first half of source 3′
    � Instant movement of the source 3

    View Slide

  39. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    �`
    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)
    1. Copy source 3 to source 3′
    2. Cut second half of source 3
    Cut first half of source 3′
    � Instant movement of the source 3
    Methods
    Name Target source indices 𝒦
    Before move After move
    🆕 ISS-all {1, 2, 3} {1, 2, 3}
    🆕 ISS-one {1, 2, 3} {3}
    IP-all {1, 2, 3} {1, 2, 3}
    IP-one {1, 2, 3} {3}

    View Slide

  40. Setup 10/13
    Room layout
    Width = �.� m
    Depth = �.� m



    �`
    Height = �.�� m
    Microphones
    Source (fixed)
    Source (moved)
    1. Copy source 3 to source 3′
    2. Cut second half of source 3
    Cut first half of source 3′
    � Instant movement of the source 3
    Methods
    Name Target source indices 𝒦
    Before move After move
    🆕 ISS-all {1, 2, 3} {1, 2, 3}
    🆕 ISS-one {1, 2, 3} {3}
    IP-all {1, 2, 3} {1, 2, 3}
    IP-one {1, 2, 3} {3}
    Note
    When and which source moves is
    known as an oracle in this experiment

    View Slide

  41. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • Segmental SDR improvements by channels

    View Slide

  42. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • Vertical dashed line indicates movement of source 3

    View Slide

  43. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • Before source 3 moved: update demixing matrices for all source indices

    View Slide

  44. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • After source 3 moved: ISS-one updates only 𝒂3𝑓
    , IP-one updates only 𝒘3𝑓

    View Slide

  45. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • Degraded separation performance due to moving source

    View Slide

  46. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    • Steadily improved thanks to online updates

    View Slide

  47. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    � ISS-one : almost the same performance as ISS-all with less updates

    View Slide

  48. Separation performance 11/13
    0
    20
    ISS-all ISS-one IP-all IP-one
    0
    20
    0 5 10 15 20 25 30
    Segment index
    0
    20
    Source 3 moved
    SegSDR improvement (dB)
    $I
    $I
    $I
    $I
    $I
    $I
    � ISS-one : higher performance than IP-one

    View Slide

  49. Runtime 12/13
    IP-all ISS-all ISS-one
    0
    2
    4
    6
    8
    10
    12
    Runtime (s)
    11.54
    11.00
    8.66
    � ISS-one was faster than IP-all

    View Slide

  50. Contents 13/13
    Introduction
    Conventional methods
    Frequency-domain BSS
    Batch AuxIVA
    Online AuxIVA
    Iterative source steering
    Proposed method: Online AuxIVA-ISS
    Experiment
    Conclusion

    View Slide

  51. Conclusion 13/13
    Summary
    • New online AuxIVA with iterative source steering (ISS)
    � Good separation performance under dynamic environment
    � Efficient update when the single source moves

    View Slide

  52. Conclusion 13/13
    Summary
    • New online AuxIVA with iterative source steering (ISS)
    � Good separation performance under dynamic environment
    � Efficient update when the single source moves
    Future work
    • Automatic detection of moveing sources
    • Efficient forgetting factor tuning
    • Efficient update rule of ISS

    View Slide

  53. References i
    [Ono2011] N. Ono, “Stable and fast update rules for independent vector analysis based on auxiliary function
    technique,” in Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and
    Acoustics (WASPAA), pp. 189–192, 2011.
    [Scheibler+2020] R. Scheibler and N. Ono, “Fast and stable blind source separation with rank-1 updates,” in
    Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May
    2020.
    [Taniguchi+2014] T. Taniguchi, N. Ono, A. Kawamura, and S. Sagayama, “An auxiliary-function approach to online
    independent vector analysis for real-time blind source separation,” in Proceedings of Hands-Free
    Speech Communication and Microphone Arrays (HSCMA), pp. 107–111, May 2014.
    Thank you!

    View Slide