Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語処理研究室B3ゼミ_02nd
Search
takegue
January 14, 2014
Education
0
37
自然言語処理研究室B3ゼミ_02nd
takegue
January 14, 2014
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
820
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.2k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1k
Rettyにおけるデータ活用について
takegue
0
860
Sparse Overcomplete Word Vector Representations
takegue
0
200
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
200
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
70
Other Decks in Education
See All in Education
HCL Domino 14.0 AutoUpdate を試してみた
harunakano
0
1.7k
ルクソールとツタンカーメン
masakamayama
1
850
Kaggle 班ができるまで
abap34
1
190
H5P-työkalut
matleenalaakso
4
36k
Comezando coas redes
irocho
0
370
PSYC-560 R and R Studio Setup
jdbedics
0
520
寺沢拓敬 2024. 09. 「言語政策研究と教育政策研究の狭間で英語教育政策を考える」
terasawat
0
200
謙虚なアジャイルコーチ__アダプティブ_ムーブ_による伴走支援.pdf
antmiyabin
0
270
Web Application Frameworks - Lecture 4 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
Os pápeis do UX Design
wagnerbeethoven
0
370
1030
cbtlibrary
0
300
1106
cbtlibrary
0
420
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Optimizing for Happiness
mojombo
376
70k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Being A Developer After 40
akosma
87
590k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Ruby is Unlike a Banana
tanoku
97
11k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Experiences People Love
moore
138
23k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
Transcript
自然言語処理研究室 B3 Seminar 2013 年度 第2回 ~機械学習と自然言語処理について~ 長岡技術科学大学 B3 竹野
峻輔
• 計算機が データから規則性や法則性を見出し それ自身をアルゴリズムに反映させること 例えば… 広告(Facebook, Google…) ロボットのバランス制御 天気予報、地震予測などなど 2013/12/24
自然言語処理研究室 2013年度 B3コアタイム 第2回 機械学習とは?
• 機械学習(Machine Learning) –既知のデータから法則性を発見し データの予測できるようにすること • データマイニング(Data Mining) –既存のデータから 有益な未知のデータの特徴を発掘すること
2013/1/14 自然言語処理研究室 2013年度 B3コアタイム 第2回 機械学習とデータマイニングの違い
• 教師有あり学習(Supervised ML) – 予め用意されたサンプルから法則性を見つける – クラス分類 • (ナイーブベイズ推定、SVM、ニューラルネットワーク) •
教師なし学習(Unsupervised ML) – サンプルなしでデータから法則性を見つける。 – クラスタ分析 • (k-means法、EMアルゴリズム) • 強化学習(Reinforcement ML) – 評価関数からアルゴリズムへフィードバックを行い改良を、 独自に改善を図っていく。 – 自動要約? • TD学習、Q学習 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 機械学習の種類
• 教師有あり学習(Supervised ML)(一番やりやすい) – 予め用意されたサンプルから法則性を見つける – クラス分類 • (ナイーブベイズ推定、SVM、ニューラルネットワーク) •
教師なし学習(Unsupervised ML) – サンプルなしでデータから法則性を見つける。 – クラスタ分析 • (k-means法、EMアルゴリズム) • 強化学習(Reinforcement ML) – 評価関数からアルゴリズムへフィードバックを行い改良を、 独自に改善を図っていく。 – 自動要約? • TD学習、Q学習 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 機械学習の種類
• 文書(自然言語)そのままでは処理しづらい 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 どうやって自然言語処理に対応するか?
• 文書(自然言語)そのままでは処理しづらい ⇒具体的な数値(素性抽出)を知る必要がある。 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 どうやって自然言語処理に対応するか?
• 文書(自然言語)そのままでは処理しづらい ⇒具体的な数値(素性抽出)を知る必要がある。 ⇒どのようなことに気を付ければよいだろうか? 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 どうやって自然言語処理に対応するか?
• 文書(自然言語)そのままでは処理しづらい ⇒具体的な数値(素性抽出)を知る必要がある。 ⇒どのようなことに気を付ければよいだろうか? 改めて、機械学習とは? 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回
どうやって自然言語処理に対応するか?
• 文書(自然言語)そのままでは処理しづらい ⇒具体的な数値(素性抽出)を知る必要がある。 ⇒どのようなことに気を付ければよいだろうか? 改めて、機械学習とは? 既知のデータから法則性を発見し データの予測ができるようにすること …未知のデータと既知のデータとの比較が必要 2013/12/24 自然言語処理研究室
2013年度 B3コアタイム 第2回 どうやって自然言語処理に対応するか?
• 文書(自然言語)そのままでは処理しづらい ⇒具体的な数値(素性抽出)を知る必要がある。 ⇒どのようなことに気を付ければよいだろうか? 改めて、機械学習とは? 既知のデータから法則性を発見し データの予測ができるようにすること …未知のデータと既知のデータとの比較が必要 類似度の計算ができるような値を取り出す 2013/12/24
自然言語処理研究室 2013年度 B3コアタイム 第2回 どうやって自然言語処理に対応するか?
• ベクトル –内積 • 木構造(グラフ)データ – シソーラス • 格フレーム •
確率分布(関数) – 平均値、偏差、歪度、尖度 (モーメント) 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 類似度が計算できるもの(例)
• ベクトル: –Bag-of-words(文書、文比較) • ある単語(方向)の頻度(長さ) Ex) The pen is better
than that pen! ⇒(pen, better, stick) = (2, 1 , 0) –文脈ベクトル(単語の比較) • 空 高く 飛ぶ(名詞 副詞 動詞) ⇒(名詞, 形容詞, 副詞, 動詞, 形容動詞) = (1,0,0,0,1,0) 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 代表的な素性
• 訓練データからクラスの傾向を学習し、 データがどのクラスに所属するか予測する。 not クラスタ解析(≒クラス分析) ・ナイーブベイズ分類器 -条件付き確率を学習 P(c|d) ≌ P(c)P(d|c)
簡単、学習早い、精度それなり ・SVM(Support Vector Machine) -多次元の境界面を学習 -解析的、学習時間かかる、精度高い 2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 クラス分類(Classification)のための機械学習
• 奥村学 監修 「言語処理のための機械学習入 門」, 高村大地著 • 機械学習をはじめよう, gihyo.jp, http://gihyo.jp/dev/serial/01/machine-learning
2013/12/24 自然言語処理研究室 2013年度 B3コアタイム 第2回 参考文献