Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自然言語処理研究室B3ゼミ_03rdWeek
Search
takegue
January 19, 2014
Technology
0
180
自然言語処理研究室B3ゼミ_03rdWeek
機械学習について引き続き
takegue
January 19, 2014
Tweet
Share
More Decks by takegue
See All by takegue
不自然言語の自然言語処理: コード補完を支える最新技術
takegue
1
870
つかわれるプラットフォーム 〜デザイン編〜@DPM#2
takegue
2
12k
カルチャーとエンジニアリングをつなぐ データプラットフォーム
takegue
4
6.5k
toC企業でのデータ活用 (PyData.Okinawa + PythonBeginners沖縄 合同勉強会 2019)
takegue
4
1.1k
Rettyにおけるデータ活用について
takegue
0
910
Sparse Overcomplete Word Vector Representations
takegue
0
220
Aligning Sentences from Standard Wikipedia to Simple Wikipedia
takegue
0
220
High-Order Low-Rank Tensors for Semantic Role Labeling
takegue
0
120
Dependency-based empty category detection via phrase structure trees
takegue
0
80
Other Decks in Technology
See All in Technology
ニッポンの人に知ってもらいたいGISスポット
sakaik
0
170
Claude Code Subagents 再入門 ~cc-sddの実装で学んだこと~
gotalab555
10
16k
技育祭2025【秋】 企業ピッチ/登壇資料(高橋 悟生)
hacobu
PRO
0
120
AI時代こそ求められる設計力- AWSクラウドデザインパターン3選で信頼性と拡張性を高める-
kenichirokimura
3
350
AIエージェント入門 〜基礎からMCP・A2Aまで〜
shukob
0
110
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
130
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.2k
サイバーエージェント流クラウドコスト削減施策「みんなで金塊堀太郎」
kurochan
4
2.1k
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
0
200
ビズリーチ求職者検索におけるPLMとLLMの活用 / Search Engineering MEET UP_2-1
visional_engineering_and_design
1
170
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
難しいセキュリティ用語をわかりやすくしてみた
yuta3110
0
330
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Code Reviewing Like a Champion
maltzj
526
40k
The Invisible Side of Design
smashingmag
302
51k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
880
Speed Design
sergeychernyshev
32
1.2k
It's Worth the Effort
3n
187
28k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Designing for Performance
lara
610
69k
Transcript
自然言語処理研究室 B3 Seminar 2013 年度 第3週 ~機械学習について Part2 ~ クラスタリング
長岡技術科学大学 B3 竹野 峻輔
• 機械学習とは? – データから規則性や法則性を見出し – それ自身をアルゴリズムに反映させること • 機械学習の種類(教師有学習、教師無学習) • 教師有学習
– ナイーブベイズ分類器(尤もらしいものと予想する) – SVM(ベクトルの境界面を計算⇒2値で分類) • 教師なし学習 – クラスタリング 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 前回までの復習 –機械学習と自然言語処理について-
• 機械学習とは? – データから規則性や法則性を見出し – それ自身をアルゴリズムに反映させること • 機械学習の種類(教師有学習、教師無学習) • 教師有学習
– ナイーブベイズ分類器(尤もらしいものと予想する) – SVM(ベクトルの境界面を計算⇒2値で分類) • 教師なし学習 – クラスタリング ⇐ 本日はこれについて 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 前回までの復習 –機械学習と自然言語処理について-
• 似ているもの同士を機械的にまとめる。 – どんな塊りになるかはわからない・・・ • 人間の感覚(クラス分類)v.s. 計算機の分け方(クラスタリング) • 擬集型クラスタリング(ボトムアップクラスタリング) •
k-平均法(k-means法) • 混合正規分布によるクラスタリング 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 クラスタリング
− 2 2 = ∑ − 2 − ∞ =
max | − | ∙ • 階層的クラスタリング(Hierarchical clustering) – 近いものから順々に結合 – クラスタは階層構造になる。 近さ(点)の定義 ・ユークリッド, マンハッタン距離 ・最大距離(無限ノルム) ・マハラノビス距離 ・余弦類似度 近さ(クラスタ)の定義 ・最大距離, 最小距離, 重心距離, 最小エネルギー 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 擬集型クラスタリング(ボトムアップクラスタリング)
• クラスタ数kを決める。 • 適当にk個に分ける • 重心(代表ベクトル)を計算 – 一番近い代表ベクトルに合併。 – 重心移動:代表ベクトルの再計算
以上繰り返し 考えるよりも 実際に見てみましょう。 てっく煮:k-means びじゅあらいず http://tech.nitoyon.com/ja/blog/2009/04/09/kmeans-visualise/ 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 K-平均法(K-means )
• EMアルゴリズムの一種 • クラスタリングの判定が確率的 • 分布は正規分布 – 代表ベクトルからの距離が長いほど確率が低くなる。 2014/1/22 自然言語処理研究室
2013年度 B3コアタイム 第3週 混合正規分布(Gaussian Mixture) によるクラスタリング ; ) = |; ( ; ) = | ∑ ( )( |; ) 代表ベクトルはP(c|xi )の 重み付き平均で更新される。
2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週
• クラスタリングで似たもの通しで、一つに集める。 – どのようなかたまりにしたいか、考える必要がある。 • 一番の問題点となるのが、クラスタ数。 – 最小記述原理 等があるが結局は地道に調べるしかない •
計算量が大きい( O(n2)~ O(n3) ) – 反復処理であるた数値誤差が溜まりやすい – 対数を利用(longsumexp法による工夫必要) • 獲得したクラスタに対する評価が難しい – 他のタスクに役立つか否かで評価する 2014/1/22 自然言語処理研究室 2013年度 B3コアタイム 第3週 クラスタリングにおける問題点および注意点