Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第7回スライド
Search
TechmathProject
September 04, 2024
Science
0
14
線形代数学入門講座 第7回スライド
てくますプロジェクトで行った線形代数学入門講座の第7回スライドです。
実施:2024/07/22
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
30
統計学入門講座 第3回スライド
techmathproject
0
28
統計学入門講座 第2回スライド
techmathproject
0
36
統計学入門講座 第1回スライド
techmathproject
0
130
線形代数学入門講座 第1回スライド
techmathproject
0
27
線形代数学入門講座 第2回スライド
techmathproject
0
25
線形代数学入門講座 第3回スライド
techmathproject
0
13
線形代数学入門講座 第4回スライド
techmathproject
0
11
線形代数学入門講座 第5回スライド
techmathproject
0
12
Other Decks in Science
See All in Science
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.1k
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
110
Introduction to Image Processing: 2.Frequ
hachama
0
270
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
990
ICRA2024 速報
rpc
3
5.5k
機械学習を支える連続最適化
nearme_tech
PRO
1
180
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
170
Transformers are Universal in Context Learners
gpeyre
0
620
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
300
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
760
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.2k
Featured
See All Featured
A better future with KSS
kneath
238
17k
The Cult of Friendly URLs
andyhume
78
6.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Optimising Largest Contentful Paint
csswizardry
33
3k
4 Signs Your Business is Dying
shpigford
181
21k
Designing Experiences People Love
moore
138
23k
Building Adaptive Systems
keathley
38
2.3k
Code Review Best Practice
trishagee
65
17k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
Building a Scalable Design System with Sketch
lauravandoore
460
33k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Transcript
線形代数学 入門講座 ⑦固有値 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 線形変換 固有値と固有ベクトル 固有多項式 固有空間
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑦固有値 線形変換 ℝ𝑛から ℝ𝑛自身への線形写像を線形変換といいます。 線形写像 𝑓 は行列 𝐴 をかける写像
𝑓 𝒗 = 𝐴𝒗 だとみなすことができましたが、 とくに線形変換の場合は、特別なベクトル 𝒗0 に対しては定数 𝜆 をかける写像 𝑓 𝒗0 = 𝜆𝒗0 の形になっているかもしれません。 そのような特別なベクトル 𝒗0 と倍率 𝜆 を調べていきます。
線形代数学 ⑦固有値 固有値と固有ベクトル ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 について、 𝑓
𝒗 = 𝜆𝒗, 𝒗 ∈ ℝ𝑛, 𝒗 ≠ 𝟎, 𝜆 ∈ ℝ をみたす 𝜆 を 𝑓 や 𝐴 の固有値, 𝒗 を固有値 𝜆 に属する固有ベクトルといいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 −1 −2 3 4 −2 3 = −4 6 = 2 −2 3 なので、 2 は 𝑓 の固有値, −2 3 は固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有値の探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、どんな数 𝜆
が固有値になるのでしょうか。 𝐴𝒗0 = 𝜆𝒗0 となる 𝒗0 ≠ 𝟎 が存在するような 𝜆 が 𝑓 の固有値です。 つまり、𝜆𝒗0 − 𝐴𝒗0 = 𝜆𝐸𝑛 − 𝐴 𝒗0 = 𝟎 となる 𝒗0 ≠ 𝟎 があるということなので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 に非自明な解があるということであり、 det 𝜆𝐸𝑛 − 𝐴 = 0 になっていることが 𝜆 が固有値であるための条件になります。
線形代数学 ⑦固有値 固有多項式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、 多項式
𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 を 𝑓 や 𝐴 の固有多項式といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 = det 𝑡 + 1 2 −3 𝑡 − 4 = 𝑡 + 1 × 𝑡 − 4 − 2 × (−3) = 𝑡2 − 3𝑡 + 2
線形代数学 ⑦固有値 固有方程式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 の固有多項式 𝜑
𝑡 に対して、 𝑡 に関する方程式 𝜑 𝑡 = 0 を 𝑓 や 𝐴 の固有方程式といいます。 固有値の探し方で見たように、固有方程式の解が固有値になっています。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有方程式は 𝜑 𝑡 = 𝑡2 − 3𝑡 + 2 = (𝑡 − 1)(𝑡 − 2) = 0 であり、 𝑓 の固有値は 1 と 2 である。
線形代数学 ⑦固有値 固有ベクトルの探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、固有値 𝜆
が見つかったとき、 どんなベクトルが 𝜆 に属する固有ベクトルになるのでしょうか。 𝐴𝒗 = 𝜆𝒗 となる 𝒗 ≠ 𝟎 が 𝜆 に属する固有ベクトルです。 つまり、𝜆𝒗 − 𝐴𝒗 = 𝜆𝐸𝑛 − 𝐴 𝒗 = 𝟎 となる 𝒗 ≠ 𝟎 を探せばいいので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 の非自明な解が 𝜆 に属する固有ベクトルです。
線形代数学 ⑦固有値 固有ベクトルの探し方 (例) 線形変換 𝑓 𝒗 = −1 −2
3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有値は 1 と 2 であった。 固有値2に属する固有ベクトルは、連立一次方程式 2 1 0 0 1 − −1 −2 3 4 𝒙 = 3 2 −3 −2 𝒙 = 𝟎 の非自明な解であり、 − 2 3 𝑐 𝑐 𝑐 ≠ 0 が固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有空間 ℝ𝑛の線形変換 𝑓 とその固有値 𝜆 に対して、 𝜆 に属する固有ベクトルと𝟎の集合
𝑊 𝜆 ; 𝑓 = 𝒗 ∈ ℝ𝑛 𝑓 𝒗 = 𝟎} は ℝ𝑛 の部分空間になっていて、 𝑓 の固有値 𝜆 の固有空間といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 固有値 2 の固有空間は 𝑊 2 ; 𝑓 = − 2 3 𝑐 𝑐 ∈ ℝ2 𝑐 ∈ ℝ = −2𝑐 3𝑐 ∈ ℝ2 𝑐 ∈ ℝ
線形代数学 ⑦固有値 まとめ ・線形変換で 𝜆 倍される非零なベクトルを固有値 𝜆 に属する固有ベクトルという。 ・固有値は固有方程式の解として得られる。 ・固有ベクトルはある連立一次方程式の非自明な解として得られる。
・固有ベクトルと零ベクトルからなる部分空間を固有空間という。