Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第7回スライド
Search
TechmathProject
September 04, 2024
Science
0
59
線形代数学入門講座 第7回スライド
てくますプロジェクトで行った線形代数学入門講座の第7回スライドです。
実施:2024/07/22
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第5回スライド
techmathproject
0
27
統計学入門講座 第6回スライド
techmathproject
0
10
統計学入門講座 第7回スライド
techmathproject
0
10
統計学入門講座 第8回スライド
techmathproject
0
9
統計学入門講座 第4回スライド
techmathproject
0
190
統計学入門講座 第3回スライド
techmathproject
0
130
統計学入門講座 第2回スライド
techmathproject
0
190
統計学入門講座 第1回スライド
techmathproject
0
460
線形代数学入門講座 第1回スライド
techmathproject
0
120
Other Decks in Science
See All in Science
高校生就活へのDA導入の提案
shunyanoda
0
6k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
480
データマイニング - ウェブとグラフ
trycycle
PRO
0
180
学術講演会中央大学学員会府中支部
tagtag
0
310
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
140
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
290
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
170
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
660
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
430
データベース08: 実体関連モデルとは?
trycycle
PRO
0
940
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
530
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
200
Featured
See All Featured
Fireside Chat
paigeccino
40
3.7k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Visualization
eitanlees
148
16k
Being A Developer After 40
akosma
91
590k
Into the Great Unknown - MozCon
thekraken
40
2.1k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Automating Front-end Workflow
addyosmani
1371
200k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Transcript
線形代数学 入門講座 ⑦固有値 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 線形変換 固有値と固有ベクトル 固有多項式 固有空間
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑦固有値 線形変換 ℝ𝑛から ℝ𝑛自身への線形写像を線形変換といいます。 線形写像 𝑓 は行列 𝐴 をかける写像
𝑓 𝒗 = 𝐴𝒗 だとみなすことができましたが、 とくに線形変換の場合は、特別なベクトル 𝒗0 に対しては定数 𝜆 をかける写像 𝑓 𝒗0 = 𝜆𝒗0 の形になっているかもしれません。 そのような特別なベクトル 𝒗0 と倍率 𝜆 を調べていきます。
線形代数学 ⑦固有値 固有値と固有ベクトル ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 について、 𝑓
𝒗 = 𝜆𝒗, 𝒗 ∈ ℝ𝑛, 𝒗 ≠ 𝟎, 𝜆 ∈ ℝ をみたす 𝜆 を 𝑓 や 𝐴 の固有値, 𝒗 を固有値 𝜆 に属する固有ベクトルといいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 −1 −2 3 4 −2 3 = −4 6 = 2 −2 3 なので、 2 は 𝑓 の固有値, −2 3 は固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有値の探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、どんな数 𝜆
が固有値になるのでしょうか。 𝐴𝒗0 = 𝜆𝒗0 となる 𝒗0 ≠ 𝟎 が存在するような 𝜆 が 𝑓 の固有値です。 つまり、𝜆𝒗0 − 𝐴𝒗0 = 𝜆𝐸𝑛 − 𝐴 𝒗0 = 𝟎 となる 𝒗0 ≠ 𝟎 があるということなので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 に非自明な解があるということであり、 det 𝜆𝐸𝑛 − 𝐴 = 0 になっていることが 𝜆 が固有値であるための条件になります。
線形代数学 ⑦固有値 固有多項式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、 多項式
𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 を 𝑓 や 𝐴 の固有多項式といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 = det 𝑡 + 1 2 −3 𝑡 − 4 = 𝑡 + 1 × 𝑡 − 4 − 2 × (−3) = 𝑡2 − 3𝑡 + 2
線形代数学 ⑦固有値 固有方程式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 の固有多項式 𝜑
𝑡 に対して、 𝑡 に関する方程式 𝜑 𝑡 = 0 を 𝑓 や 𝐴 の固有方程式といいます。 固有値の探し方で見たように、固有方程式の解が固有値になっています。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有方程式は 𝜑 𝑡 = 𝑡2 − 3𝑡 + 2 = (𝑡 − 1)(𝑡 − 2) = 0 であり、 𝑓 の固有値は 1 と 2 である。
線形代数学 ⑦固有値 固有ベクトルの探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、固有値 𝜆
が見つかったとき、 どんなベクトルが 𝜆 に属する固有ベクトルになるのでしょうか。 𝐴𝒗 = 𝜆𝒗 となる 𝒗 ≠ 𝟎 が 𝜆 に属する固有ベクトルです。 つまり、𝜆𝒗 − 𝐴𝒗 = 𝜆𝐸𝑛 − 𝐴 𝒗 = 𝟎 となる 𝒗 ≠ 𝟎 を探せばいいので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 の非自明な解が 𝜆 に属する固有ベクトルです。
線形代数学 ⑦固有値 固有ベクトルの探し方 (例) 線形変換 𝑓 𝒗 = −1 −2
3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有値は 1 と 2 であった。 固有値2に属する固有ベクトルは、連立一次方程式 2 1 0 0 1 − −1 −2 3 4 𝒙 = 3 2 −3 −2 𝒙 = 𝟎 の非自明な解であり、 − 2 3 𝑐 𝑐 𝑐 ≠ 0 が固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有空間 ℝ𝑛の線形変換 𝑓 とその固有値 𝜆 に対して、 𝜆 に属する固有ベクトルと𝟎の集合
𝑊 𝜆 ; 𝑓 = 𝒗 ∈ ℝ𝑛 𝑓 𝒗 = 𝟎} は ℝ𝑛 の部分空間になっていて、 𝑓 の固有値 𝜆 の固有空間といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 固有値 2 の固有空間は 𝑊 2 ; 𝑓 = − 2 3 𝑐 𝑐 ∈ ℝ2 𝑐 ∈ ℝ = −2𝑐 3𝑐 ∈ ℝ2 𝑐 ∈ ℝ
線形代数学 ⑦固有値 まとめ ・線形変換で 𝜆 倍される非零なベクトルを固有値 𝜆 に属する固有ベクトルという。 ・固有値は固有方程式の解として得られる。 ・固有ベクトルはある連立一次方程式の非自明な解として得られる。
・固有ベクトルと零ベクトルからなる部分空間を固有空間という。