Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
線形代数学入門講座 第7回スライド
Search
TechmathProject
September 04, 2024
Science
0
44
線形代数学入門講座 第7回スライド
てくますプロジェクトで行った線形代数学入門講座の第7回スライドです。
実施:2024/07/22
TechmathProject
September 04, 2024
Tweet
Share
More Decks by TechmathProject
See All by TechmathProject
統計学入門講座 第4回スライド
techmathproject
0
140
統計学入門講座 第3回スライド
techmathproject
0
100
統計学入門講座 第2回スライド
techmathproject
0
130
統計学入門講座 第1回スライド
techmathproject
0
340
線形代数学入門講座 第1回スライド
techmathproject
0
83
線形代数学入門講座 第2回スライド
techmathproject
0
62
線形代数学入門講座 第3回スライド
techmathproject
0
53
線形代数学入門講座 第4回スライド
techmathproject
0
43
線形代数学入門講座 第5回スライド
techmathproject
0
52
Other Decks in Science
See All in Science
データベース02: データベースの概念
trycycle
PRO
2
750
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
330
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
420
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
700
データベース08: 実体関連モデルとは?
trycycle
PRO
0
660
SciPyDataJapan 2025
schwalbe10
0
240
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
オンプレミス環境にKubernetesを構築する
koukimiura
0
250
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
770
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
170
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.2k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
130
Featured
See All Featured
Become a Pro
speakerdeck
PRO
28
5.4k
The Cost Of JavaScript in 2023
addyosmani
50
8.4k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Rails Girls Zürich Keynote
gr2m
94
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Bash Introduction
62gerente
614
210k
KATA
mclloyd
29
14k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Automating Front-end Workflow
addyosmani
1370
200k
RailsConf 2023
tenderlove
30
1.1k
Balancing Empowerment & Direction
lara
1
330
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Transcript
線形代数学 入門講座 ⑦固有値 てくますゼミ
①行列の演算 ②連立一次方程式 ③正則行列 ④置換 ⑤行列式 ⑥数ベクトル空間 ⑦固有値 ⑧行列の対角化 てくます講座 線形代数学(全8回)
の流れ 線形変換 固有値と固有ベクトル 固有多項式 固有空間
てくます講座 学習方法 ・メモをとろう! 講座ではスライドに載せきれない大事なことも話します。 配布されたレジュメの余白に書いておきましょう。 ・問題を解こう! 学問を読み聞きだけで身に付けるのは難しいです。 問題を解くことで手を動かし、理解の確認をしましょう。 ・質問をしよう! せっかく参加した講座です。
気になることは、講座中でも質問していきましょう。
線形代数学 ⑦固有値 線形変換 ℝ𝑛から ℝ𝑛自身への線形写像を線形変換といいます。 線形写像 𝑓 は行列 𝐴 をかける写像
𝑓 𝒗 = 𝐴𝒗 だとみなすことができましたが、 とくに線形変換の場合は、特別なベクトル 𝒗0 に対しては定数 𝜆 をかける写像 𝑓 𝒗0 = 𝜆𝒗0 の形になっているかもしれません。 そのような特別なベクトル 𝒗0 と倍率 𝜆 を調べていきます。
線形代数学 ⑦固有値 固有値と固有ベクトル ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 について、 𝑓
𝒗 = 𝜆𝒗, 𝒗 ∈ ℝ𝑛, 𝒗 ≠ 𝟎, 𝜆 ∈ ℝ をみたす 𝜆 を 𝑓 や 𝐴 の固有値, 𝒗 を固有値 𝜆 に属する固有ベクトルといいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 −1 −2 3 4 −2 3 = −4 6 = 2 −2 3 なので、 2 は 𝑓 の固有値, −2 3 は固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有値の探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、どんな数 𝜆
が固有値になるのでしょうか。 𝐴𝒗0 = 𝜆𝒗0 となる 𝒗0 ≠ 𝟎 が存在するような 𝜆 が 𝑓 の固有値です。 つまり、𝜆𝒗0 − 𝐴𝒗0 = 𝜆𝐸𝑛 − 𝐴 𝒗0 = 𝟎 となる 𝒗0 ≠ 𝟎 があるということなので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 に非自明な解があるということであり、 det 𝜆𝐸𝑛 − 𝐴 = 0 になっていることが 𝜆 が固有値であるための条件になります。
線形代数学 ⑦固有値 固有多項式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、 多項式
𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 を 𝑓 や 𝐴 の固有多項式といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 = det 𝑡 + 1 2 −3 𝑡 − 4 = 𝑡 + 1 × 𝑡 − 4 − 2 × (−3) = 𝑡2 − 3𝑡 + 2
線形代数学 ⑦固有値 固有方程式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 の固有多項式 𝜑
𝑡 に対して、 𝑡 に関する方程式 𝜑 𝑡 = 0 を 𝑓 や 𝐴 の固有方程式といいます。 固有値の探し方で見たように、固有方程式の解が固有値になっています。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有方程式は 𝜑 𝑡 = 𝑡2 − 3𝑡 + 2 = (𝑡 − 1)(𝑡 − 2) = 0 であり、 𝑓 の固有値は 1 と 2 である。
線形代数学 ⑦固有値 固有ベクトルの探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、固有値 𝜆
が見つかったとき、 どんなベクトルが 𝜆 に属する固有ベクトルになるのでしょうか。 𝐴𝒗 = 𝜆𝒗 となる 𝒗 ≠ 𝟎 が 𝜆 に属する固有ベクトルです。 つまり、𝜆𝒗 − 𝐴𝒗 = 𝜆𝐸𝑛 − 𝐴 𝒗 = 𝟎 となる 𝒗 ≠ 𝟎 を探せばいいので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 の非自明な解が 𝜆 に属する固有ベクトルです。
線形代数学 ⑦固有値 固有ベクトルの探し方 (例) 線形変換 𝑓 𝒗 = −1 −2
3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有値は 1 と 2 であった。 固有値2に属する固有ベクトルは、連立一次方程式 2 1 0 0 1 − −1 −2 3 4 𝒙 = 3 2 −3 −2 𝒙 = 𝟎 の非自明な解であり、 − 2 3 𝑐 𝑐 𝑐 ≠ 0 が固有値 2 に属する固有ベクトルである。
線形代数学 ⑦固有値 固有空間 ℝ𝑛の線形変換 𝑓 とその固有値 𝜆 に対して、 𝜆 に属する固有ベクトルと𝟎の集合
𝑊 𝜆 ; 𝑓 = 𝒗 ∈ ℝ𝑛 𝑓 𝒗 = 𝟎} は ℝ𝑛 の部分空間になっていて、 𝑓 の固有値 𝜆 の固有空間といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 固有値 2 の固有空間は 𝑊 2 ; 𝑓 = − 2 3 𝑐 𝑐 ∈ ℝ2 𝑐 ∈ ℝ = −2𝑐 3𝑐 ∈ ℝ2 𝑐 ∈ ℝ
線形代数学 ⑦固有値 まとめ ・線形変換で 𝜆 倍される非零なベクトルを固有値 𝜆 に属する固有ベクトルという。 ・固有値は固有方程式の解として得られる。 ・固有ベクトルはある連立一次方程式の非自明な解として得られる。
・固有ベクトルと零ベクトルからなる部分空間を固有空間という。