Upgrade to Pro — share decks privately, control downloads, hide ads and more …

線形代数学入門講座 第7回スライド

TechmathProject
September 04, 2024

線形代数学入門講座 第7回スライド

てくますプロジェクトで行った線形代数学入門講座の第7回スライドです。
実施:2024/07/22

TechmathProject

September 04, 2024
Tweet

More Decks by TechmathProject

Other Decks in Science

Transcript

  1. 線形代数学 ⑦固有値 線形変換 ℝ𝑛から ℝ𝑛自身への線形写像を線形変換といいます。 線形写像 𝑓 は行列 𝐴 をかける写像

    𝑓 𝒗 = 𝐴𝒗 だとみなすことができましたが、 とくに線形変換の場合は、特別なベクトル 𝒗0 に対しては定数 𝜆 をかける写像 𝑓 𝒗0 = 𝜆𝒗0 の形になっているかもしれません。 そのような特別なベクトル 𝒗0 と倍率 𝜆 を調べていきます。
  2. 線形代数学 ⑦固有値 固有値と固有ベクトル ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 について、 𝑓

    𝒗 = 𝜆𝒗, 𝒗 ∈ ℝ𝑛, 𝒗 ≠ 𝟎, 𝜆 ∈ ℝ をみたす 𝜆 を 𝑓 や 𝐴 の固有値, 𝒗 を固有値 𝜆 に属する固有ベクトルといいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 −1 −2 3 4 −2 3 = −4 6 = 2 −2 3 なので、 2 は 𝑓 の固有値, −2 3 は固有値 2 に属する固有ベクトルである。
  3. 線形代数学 ⑦固有値 固有値の探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、どんな数 𝜆

    が固有値になるのでしょうか。 𝐴𝒗0 = 𝜆𝒗0 となる 𝒗0 ≠ 𝟎 が存在するような 𝜆 が 𝑓 の固有値です。 つまり、𝜆𝒗0 − 𝐴𝒗0 = 𝜆𝐸𝑛 − 𝐴 𝒗0 = 𝟎 となる 𝒗0 ≠ 𝟎 があるということなので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 に非自明な解があるということであり、 det 𝜆𝐸𝑛 − 𝐴 = 0 になっていることが 𝜆 が固有値であるための条件になります。
  4. 線形代数学 ⑦固有値 固有多項式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、 多項式

    𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 を 𝑓 や 𝐴 の固有多項式といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝜑 𝑡 = det 𝑡𝐸𝑛 − 𝐴 = det 𝑡 + 1 2 −3 𝑡 − 4 = 𝑡 + 1 × 𝑡 − 4 − 2 × (−3) = 𝑡2 − 3𝑡 + 2
  5. 線形代数学 ⑦固有値 固有方程式 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 の固有多項式 𝜑

    𝑡 に対して、 𝑡 に関する方程式 𝜑 𝑡 = 0 を 𝑓 や 𝐴 の固有方程式といいます。 固有値の探し方で見たように、固有方程式の解が固有値になっています。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有方程式は 𝜑 𝑡 = 𝑡2 − 3𝑡 + 2 = (𝑡 − 1)(𝑡 − 2) = 0 であり、 𝑓 の固有値は 1 と 2 である。
  6. 線形代数学 ⑦固有値 固有ベクトルの探し方 ℝ𝑛の線形変換 𝑓 𝒗 = 𝐴𝒗 に対して、固有値 𝜆

    が見つかったとき、 どんなベクトルが 𝜆 に属する固有ベクトルになるのでしょうか。 𝐴𝒗 = 𝜆𝒗 となる 𝒗 ≠ 𝟎 が 𝜆 に属する固有ベクトルです。 つまり、𝜆𝒗 − 𝐴𝒗 = 𝜆𝐸𝑛 − 𝐴 𝒗 = 𝟎 となる 𝒗 ≠ 𝟎 を探せばいいので、 連立一次方程式 𝜆𝐸𝑛 − 𝐴 𝒙 = 𝟎 の非自明な解が 𝜆 に属する固有ベクトルです。
  7. 線形代数学 ⑦固有値 固有ベクトルの探し方 (例) 線形変換 𝑓 𝒗 = −1 −2

    3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 𝑓 の固有値は 1 と 2 であった。 固有値2に属する固有ベクトルは、連立一次方程式 2 1 0 0 1 − −1 −2 3 4 𝒙 = 3 2 −3 −2 𝒙 = 𝟎 の非自明な解であり、 − 2 3 𝑐 𝑐 𝑐 ≠ 0 が固有値 2 に属する固有ベクトルである。
  8. 線形代数学 ⑦固有値 固有空間 ℝ𝑛の線形変換 𝑓 とその固有値 𝜆 に対して、 𝜆 に属する固有ベクトルと𝟎の集合

    𝑊 𝜆 ; 𝑓 = 𝒗 ∈ ℝ𝑛 𝑓 𝒗 = 𝟎} は ℝ𝑛 の部分空間になっていて、 𝑓 の固有値 𝜆 の固有空間といいます。 (例) 線形変換 𝑓 𝒗 = −1 −2 3 4 𝒗 (𝒗 ∈ ℝ2) に対して、 固有値 2 の固有空間は 𝑊 2 ; 𝑓 = − 2 3 𝑐 𝑐 ∈ ℝ2 𝑐 ∈ ℝ = −2𝑐 3𝑐 ∈ ℝ2 𝑐 ∈ ℝ