Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Automating Fraud Detection - Continuous Model D...
Search
techsessions
February 14, 2018
Technology
0
6.7k
Automating Fraud Detection - Continuous Model Deployment
Stephen Whitworth, Co-Founder & Machine Learning Engineer, Ravelin
techsessions
February 14, 2018
Tweet
Share
More Decks by techsessions
See All by techsessions
Building Multilingual Recommendations Systems for BBC News
techsessions
1
6.6k
Bayesian Online Change-Point Detection at Scale
techsessions
2
7.4k
Modeling the Importance of Flight Partners at Skyscanner
techsessions
0
6.6k
Constructing Flight Itineraries with Machine Learning
techsessions
0
6.6k
Natural Language Processing in Media: Challenges and Opportunities
techsessions
0
14k
The Impact of Automation at Scale
techsessions
0
8k
Machine Learning at Zopa
techsessions
0
8.1k
The Inner Workings of Monzo’s Help Search Algorithm
techsessions
3
14k
Modern Techniques for Dimensional Reduction
techsessions
1
14k
Other Decks in Technology
See All in Technology
Service Monitoring Platformについて
lycorptech_jp
PRO
0
320
ZOZOTOWNカート決済リプレイス ── モジュラモノリスという過渡期戦略
zozotech
PRO
0
490
大規模プロダクトで実践するAI活用の仕組みづくり
k1tikurisu
5
1.7k
Redux → Recoil → Zustand → useSyncExternalStore: 状態管理の10年とReact本来の姿
zozotech
PRO
21
8.9k
ECS組み込みのBlue/Greenデプロイを動かしてELB側の動きを観察してみる
yuki_ink
3
360
単一Kubernetesクラスタで実現する AI/ML 向けクラウドサービス
pfn
PRO
1
340
生成AI時代に若手エンジニアが最初に覚えるべき内容と、その学習法
starfish719
2
550
はじめての OSS コントリビューション 〜小さな PR が世界を変える〜
chiroito
4
350
国産クラウドを支える設計とチームの変遷 “技術・組織・ミッション”
kazeburo
4
5.5k
FFMとJVMの実装から学ぶJavaのインテグリティ
kazumura
0
150
Error.prototype.stack の今と未来
progfay
1
190
AI × クラウドで シイタケの収穫時期を判定してみた
lamaglama39
1
380
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
410
Site-Speed That Sticks
csswizardry
13
970
How to train your dragon (web standard)
notwaldorf
97
6.4k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Faster Mobile Websites
deanohume
310
31k
Designing for Performance
lara
610
69k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
Stephen Whitworth | 08.02.18 ravelin.com Continuous model deployment
ravelin.com ravelin.com Credit card fraud detection platform for merchants
ravelin.com ravelin.com Score customers in real time for likelihood of
fraud
ravelin.com ravelin.com Machine learning sits at the core of our
detection strategy
ravelin.com ravelin.com Normal ML deployment cycle: release few times a
quarter
ravelin.com ravelin.com Ravelin deployment cycle: deploy new models many times
a week
ravelin.com ravelin.com Frequency reduces difficulty: if something is hard, do
it more often. (Martin Fowler)
Training infrastructure • Python / Go hybrid pipeline • Packaged/distributed
through Docker • On demand compute on big machines • One line to build a new model, run experiments
Pipeline output • New model, trained from scratch • All
output archived to Google Cloud Storage • Performance metrics posted to internal registry • Model deployed to asynchronous live cluster • HTML report of performance for team
Summary report
Comparing two models
• Summarisation over raw details • Minimise manual toil at
all costs • Automation reigns king • Unit test output of models • Make model deployment ‘boring’ Principles for high-performing ML teams
• Data Scientists - join my team! • Head of
Product • Product Managers • Javascript Engineer • Investigations Analyst • Full Stack Engineers • Backend Engineers • Devops Engineer We’re hiring - www.angel.co/ravelin