Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
280
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.7k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
600
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
410
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
210
Jupyter Notebookを納品した話
tereka114
0
480
Multi Scale Recognition with DAG-CNNs
tereka114
0
150
How to use scikit-image for data augmentation
tereka114
0
280
Other Decks in Programming
See All in Programming
ゲームの物理
fadis
3
910
LLMは麻雀を知らなすぎるから俺が教育してやる
po3rin
3
2k
バイブコーディング超えてバイブデプロイ〜CloudflareMCPで実現する、未来のアプリケーションデリバリー〜
azukiazusa1
3
800
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
120
Vibe coding コードレビュー
kinopeee
0
420
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
2
450
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
390
マイコンでもRustのtestがしたい その2/KernelVM Tokyo 18
tnishinaga
2
1.7k
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
110
[DevinMeetupTokyo2025] コード書かせないDevinの使い方
takumiyoshikawa
2
270
Infer入門
riru
4
1.3k
Constant integer division faster than compiler-generated code
herumi
2
560
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
36
6.8k
We Have a Design System, Now What?
morganepeng
53
7.7k
Code Review Best Practice
trishagee
69
19k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Designing Experiences People Love
moore
142
24k
Building Applications with DynamoDB
mza
96
6.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
800
The Language of Interfaces
destraynor
158
25k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!