Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
Search
tereka114
March 16, 2022
Programming
0
280
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.7k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.7k
KDD2023学会参加報告
tereka114
2
630
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
420
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
220
Jupyter Notebookを納品した話
tereka114
0
500
Multi Scale Recognition with DAG-CNNs
tereka114
0
160
How to use scikit-image for data augmentation
tereka114
0
290
Other Decks in Programming
See All in Programming
スキーマ駆動で、Zod OpenAPI Honoによる、API開発するために、Hono Takibiというライブラリを作っている
nakita628
0
330
kiroとCodexで最高のSpec駆動開発を!!数時間で web3ネイティブなミニゲームを作ってみたよ!
mashharuki
0
950
品質ワークショップをやってみた
nealle
0
650
Towards Transactional Buffering of CDC Events @ Flink Forward 2025 Barcelona Spain
hpgrahsl
0
120
Webサーバーサイド言語としてのRustについて
kouyuume
1
5k
Devvox Belgium - Agentic AI Patterns
kdubois
1
150
チームの境界をブチ抜いていけ
tokai235
0
230
Developer Joy - The New Paradigm
hollycummins
1
370
CSC509 Lecture 08
javiergs
PRO
0
260
AkarengaLT vol.38
hashimoto_kei
1
130
GC25 Recap: The Code You Reviewed is Not the Code You Built / #newt_gophercon_tour
mazrean
0
120
bootcamp2025_バックエンド研修_WebAPIサーバ作成.pdf
geniee_inc
0
140
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.9k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Balancing Empowerment & Direction
lara
5
700
The Pragmatic Product Professional
lauravandoore
36
7k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Done Done
chrislema
185
16k
Embracing the Ebb and Flow
colly
88
4.9k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
What's in a price? How to price your products and services
michaelherold
246
12k
Code Review Best Practice
trishagee
72
19k
Bash Introduction
62gerente
615
210k
Transcript
面倒くさいこと考えたくない あなたへ 〜TPOTと機械学習〜 Acroquest Technology株式会社 山本 大輝(@tereka114)
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. 画像処理、データ分析
4. 「のんびりしているエンジニアの日記」 (http://nonbiri-tereka.hatenablog.com/)
機械学習にデータを入れたい?
何を考えますか?
データの加工方法?
確かにそうでしょう。
一覧化しました。
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 2. 特徴選択 3. 特徴量加工 2.
モデル 1. どんなモデルを作るか 1. Logistic Regression, 2. Random Forest 3. パラメータ 1. Ex. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
考えること多すぎ!
めんどくさい
機械学習において考えないといけないこと 1. 前処理 1. 前処理の種類 1. Z変換 2. モデル 1.
どんなモデルを作るか 1. Logistic Regression, 2. RandomForest 3. パラメータ 1. SVM(C, kernel ,eps etc) 4. 評価 1. Log loss, mse, rmse
自動化します。
そう、TPOTで
What is TPOT? 1. TPOTは自動的にモデル選択、パラメータの選択を 遺伝的プログラミングを使って、最適化します。 1. 遺伝的プログラミングの実装はDEAPを使っている。 2. で、何ができるの?
1. 入力した特徴量から最適化する。 2. 最適化したコードを吐き出す。 3. コマンドラインとしても実行可能
TPOT 概要
TPOT 概要 前処理 モデル構築 パラメータの最適化
TPOT Example
TPOT Example データ作成 学習する スコア計算する ファイルにExport Pipeline
TPOTクラス 1. TPOT自身は、TPOTのコードをexportする他に predict, fit, fit_transform, score等のメソッドを持つ。 2. TPOTはscikit-learnを継承していないが、基本的に scikit-learnと同じインターフェースとして使える。
3. 内部は全てscikit-learn 4. TPOT便利
生成コード ここを変更する。
内部では・・・? 1. TPOTの前処理や分析は全てscikit-learnのクラスを 使っている。 1. Feature Selection等 2. 遺伝的プログラミングのコードはDEAPライブラリに よる作成なので、パラメータ(generation)等は似て
いる。
まとめ 1. TPOTを使った簡単な機械学習に挑戦した。 2. 遺伝的プログラミングを使った最適化によって良い 処理を生成する。 3. 簡単にコードを生成し、使える。
御清聴ありがとうございました!