Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ファッションアイテムの類似画像検索を実装してみました/Fashion Tech Meetup ...
Search
tn1031
March 22, 2016
Technology
3
9.1k
ファッションアイテムの類似画像検索を実装してみました/Fashion Tech Meetup #2 LT
2016/03/22
Fashion Tech Meetup #2
tn1031
March 22, 2016
Tweet
Share
More Decks by tn1031
See All by tn1031
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
tn1031
0
120
インタラクティブな属性操作が可能なファッションアイテム検索/attribute manipulation survey
tn1031
0
1.2k
Autoencoderを用いたOutfitからのスタイル抽出/style auto encoder
tn1031
0
12k
fashion_workshop_survey/Size Recommendation System for Fashion E-commerce
tn1031
0
280
画像を用いたファッションアイテム検索/Image Retrieval for Fashion
tn1031
0
5.5k
ファッションアイテム検索における深層学習の活用/Fashion Item Retrieval using Deep Learning
tn1031
0
2.3k
ディープラーニングでコーデを提案/FashionTechMeetup#4
tn1031
0
2.3k
KDD 2016勉強会/Images Don’t Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank
tn1031
0
1k
ファッションのコーディネートを自動生成してみた/FashionTech Talks Tokyo #1 LT
tn1031
2
1.1k
Other Decks in Technology
See All in Technology
「手を動かした者だけが世界を変える」ソフトウェア開発だけではない開発者人生
onishi
15
7.6k
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
220
Microsoft Learn MCP/Fabric データエージェント/Fabric MCP/Copilot Studio-簡単・便利なAIエージェント作ってみた -"Building Simple and Powerful AI Agents with Microsoft Learn MCP, Fabric Data Agent, Fabric MCP, and Copilot Studio"-
reireireijinjin6
1
170
AWS表彰プログラムとキャリアについて
naoki_0531
1
140
With Devin -AIの自律とメンバーの自立
kotanin0
2
840
【CEDEC2025】LLMを活用したゲーム開発支援と、生成AIの利活用を進める組織的な取り組み
cygames
PRO
1
1.7k
AIに全任せしないコーディングとマネジメント思考
kikuchikakeru
0
280
20250728 MCP, A2A and Multi-Agents in the future
yoshidashingo
1
110
P2P ではじめる WebRTC のつまづきどころ
tnoho
1
270
モバイルゲームの開発を支える基盤の歩み ~再現性のある開発ラインを量産する秘訣~
qualiarts
0
660
Step Functions First - サーバーレスアーキテクチャの新しいパラダイム
taikis
1
280
マルチモーダル基盤モデルに基づく動画と音の解析技術
lycorptech_jp
PRO
2
270
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.2k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
What's in a price? How to price your products and services
michaelherold
246
12k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
860
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
54k
Statistics for Hackers
jakevdp
799
220k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Agile that works and the tools we love
rasmusluckow
329
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Facilitating Awesome Meetings
lara
54
6.5k
Transcript
ϑΝογϣϯΞΠςϜͷ ྨࣅը૾ݕࡧΛ࣮ͯ͠Έ·ͨ͠ 2016/03/22 FASHION TECH MEETUP #2 Presented by @tn1031,
VASILY Inc.
0. ࣗݾհ ࣗݾհ ▸ தଜ ຏ / @tn1031 ▸ σʔλαΠΤϯςΟετ
▸ SIer(2) -> VASILY(3िؒ) ▸ ػցֶशΛઐ߈ ▸ SHIROBAKOਓੜ 2 @tn1031 ਓೳɹɹɹɹɹ झຯͰᅂΉఔ SHIROBAKOͷଚ͍ը૾
1. औΓΈͷഎܠ ྨࣅը૾ݕࡧ͕͋Δͱྑ͍໘ ʮཉ͍͠ΞΠςϜ͋Δ͚Ͳɺߴͯ͘ख͕ग़ͳ͍ɻʯ ʮଥڠͯ͠ങͬͨޙʹɺ͕ࣗങͬͨͷΑΓྑ͍ͷ͕ݟ͔ͭΔɻʯ 3 ྨࣅը૾ݕࡧ͕͋Ε ʮࣅͨΞΠςϜΛ୳͠·ΘΔख͕ؒল͚Δʂʯ ʮଥڠͤͣʹΉ͜ͱ͕Ͱ͖Δʂʯ
2. ը૾ݕࡧʹ͍ͭͯ ը૾ݕࡧʹओʹ̎छྨ͋Γ·͢ ςΩετϕʔεͷݕࡧ ▸ Image meta search ▸ ը૾ʹਵ͢Δϝλσʔλɹ
ςΩετΛར༻ͨ͠ݕࡧ 4 ը૾ϕʔεͷݕࡧ ▸ Content-based image retrieval (CBIR) ▸ ςΩετใΛΘͣɺը૾ͷಛ (৭ɺܗঢ়ͳͲ)Λར༻ͨ͠ݕࡧ ը૾σʔλ ը૾σʔλ ςΩετσʔλ ͑Δใɹ ը૾σʔλ͚ͩ
2. ը૾ݕࡧʹ͍ͭͯ ը૾ݕࡧʹओʹ̎छྨ͋Γ·͢ ςΩετϕʔεͷݕࡧ ▸ Image meta search ▸ ը૾ʹਵ͢Δϝλσʔλɹ
ςΩετΛར༻ͨ͠ݕࡧ 5 ը૾ϕʔεͷݕࡧ ▸ Content-based image retrieval (CBIR) ▸ ςΩετใΛΘͣɺը૾ͷಛ (৭ɺܗঢ়ͳͲ)Λར༻ͨ͠ݕࡧ ը૾σʔλ ը૾σʔλ ͑Δใɹ ը૾σʔλ͚ͩ ςΩετσʔλ ࠓճͪ͜Βʹઓ
2. ը૾ݕࡧʹ͍ͭͯ ը૾ݕࡧѹॖͱڑܭࢉͰ͢ ը૾ݕࡧͷجຊతͳߟ͑ํ ▸ ͳΔ࣍͘ͷۭؒʹѹॖ͠ɺѹॖͨ͠ϕΫτϧͷڑʹج͍ͮͯྨࣅΛఆٛ͢Δ ▸ ࣅ͍ͯΔը૾ಉ࢜ͷڑ͕ۙ͘ɺࣅ͍ͯͳ͍ը૾ͱͷڑ͕ԕ͘ͳΔΑ͏ʹѹॖ͢Δ 6 ಛྔۭؒ
f(x) ѹॖ ͍ۙ(ࣅ͍ͯΔ) ԕ͍(ࣅ͍ͯͳ͍) ը૾σʔλ ॎԣ480pixelͷ߹ɺ࣍ݩ 480x480x3 = 691200 dim ը૾ಛྔ ը૾σʔλΛදݱ͢Δ࣍ͷϕΫτϧ ը૾Λѹॖ(=ಛநग़)͢ΔؔΛ Ͳͷ༷ʹઃܭ͢Δ͔͕େࣄ
3. ྨࣅը૾ݕࡧ CBIRΛࢼͯ͠Έ·ͨ͠ 7 3௨Γͷํ๏Ͱ࣮ 1. Color histogram + Histogram
of oriented gradients (HOG) - ίϯϐϡʔλϏδϣϯͷ౷తͳಛநग़ํ๏ 2. Convolutional Neural Network (CNN) based model - σΟʔϓϥʔχϯά(ࣝผϞσϧ)ʹΑΔಛநग़ 3. Deep Convolutional Generative Adversarial Networks (DCGAN) - σΟʔϓϥʔχϯά(ੜϞσϧ)ʹΑΔಛநग़
3. ྨࣅը૾ݕࡧ > 3.1. COLOR HISTOGRAM + HOG 1. COLOR
HISTOGRAM + HOG ▸ ը૾ͷHSVΛώετάϥϜԽ ▸ ը૾ͷًޯΛώετάϥϜԽ ▸ 2छྨͷώετάϥϜΛ݁߹ͯ͠ը૾ͷಛྔͱ͢Δ 8 HSVநग़ άϨʔɹɹ εέʔϧ ৭ใώετάϥϜ ޯใώετάϥϜ ը૾ಛྔ ޯநग़
3. ྨࣅը૾ݕࡧ > 3.1. COLOR HISTOGRAM + HOG 1. COLOR
HISTOGRAM + HOG 9 ←ΫΤϦը૾ ݕࡧ݁Ռ ↓ ←ΫΤϦը૾ ݕࡧ݁Ռ ↓
3. ྨࣅը૾ݕࡧ > 3.2. CNN BASED MODEL 2. CNN BASED
MODEL ▸ CNNΛimage netͰֶशͤ͞Δ ▸ ֶशࡁΈCNNʹΞΠςϜը૾ͱΧςΰϦϥϕϧΛೖͯ͠࠶ֶशͤ͞Δ ▸ શ݁߹ͷग़ྗΛը૾ಛྔͱ͢Δ 10 CNN શ݁߹ 4096ϊʔυ જࡏ 64ϊʔυ ग़ྗ 7ϊʔυ ΧςΰϦɹ ༧ଌ ը૾ಛྔ ݕࡧ࣌ͷڑܭࢉʹ༻ ը૾ͷϋογϡ ݕࡧରͷߜࠐʹ༻ ̍̍̌ɾɾ̍̌
3. ྨࣅը૾ݕࡧ > 3.2. CNN BASED MODEL 2. CNN BASED
MODEL 11 ←ΫΤϦը૾ ݕࡧ݁Ռ ↓ ←ΫΤϦը૾ ݕࡧ݁Ռ ↓
3. ྨࣅը૾ݕࡧ > 3.3. DCGAN 3. DCGAN ▸ DCGANͰGeneratorͱDiscriminatorͷֶशΛߦ͏ ▸
ֶशࡁΈGeneratorΛ༻͍ͯVectorizerͷֶशΛߦ͏ ▸ ֶशࡁΈVectorizerΛ༻͍ͯը૾Λ100࣍ݩͷϕΫτϧʹม͢Δ 12 DCGAN DISCRIPTOR GENERATOR TRAINED DISCRIPTOR TRAINED GENERATOR TRAINED GENERATOR VECTORIZER 100࣍ݩ ϕΫτϧ(ཚ) ը૾ੜ(ِ) TRAINEDɹ VECTORIZER ΞΠςϜը૾ 100࣍ݩ ϕΫτϧ 100࣍ݩ ϕΫτϧ ↓ ը૾ಛྔ Ϟσϧֶश ಛநग़
3. ྨࣅը૾ݕࡧ > 3.3. DCGAN 3. DCGAN 13 DCGAN DISCRIPTOR
GENERATOR TRAINED DISCRIPTOR TRAINED GENERATOR TRAINED GENERATOR VECTORIZER 100࣍ݩ ϕΫτϧ(ཚ) ը૾ੜ(ِ) TRAINEDɹ VECTORIZER ΞΠςϜը૾ 100࣍ݩ ϕΫτϧ 100࣍ݩ ϕΫτϧ ↓ ը૾ಛྔ Ϟσϧֶश ಛநग़ ฐࣾςοΫϒϩάͰ·ͱΊ͍ͯ·͢ http://tech.vasily.jp/entry/fashion-deep-learning
3. ྨࣅը૾ݕࡧ > 3.3. DCGAN 3. DCGAN 14 ←ΫΤϦը૾ ݕࡧ݁Ռ
↓ ←ΫΤϦը૾ ݕࡧ݁Ռ ↓
3. ྨࣅը૾ݕࡧ > 3.4. ֤छ๏ͷൺֱ ͬͯΈͨײ 15 COLOR HISTOGRAM +
HOG CNN BASED MODEL DCGAN ख๏ ϝϦοτ σϝϦοτ ݕࡧ݁Ռͷ੍ޚ͕؆୯ લॲཧ͕େม ѹॖ͕ѱ͍ લॲཧָ͕ ϋογϡΛར༻ͨ͠ݕࡧ ඞཁͳใֶ͕शͷաఔͰ མͪΔ͜ͱ͕͋Δ લॲཧָ͕ ѹॖ͕ྑ͍ ݕࡧ݁Ռͷ੍ޚ͕ҋ
4. ·ͱΊͱࠓޙͷ՝ ·ͱΊ ▸ ྨࣅը૾ݕࡧػೳΛ࣮ͨ͠ - ݁Ռʹख๏ͷݸੑ͕ݟΕͯ໘ന͍ 16 ࠓޙͷ՝ ▸
ݕࡧ্ - ॠ࣌ʹݕࡧ݁Ռ͕ฦͬͯ͜ͳ͍ͱ͑ͳ͍ ▸ αʔϏεΛݟਾ͑ͨվળ - Ϣʔβ͕ຊʹݟ͍ͨใɺཉ͍͠ػೳԿ͔
͝ਗ਼ௌ ͋Γ͕ͱ͏͍͟͝·ͨ͠ We are hiring !! ڵຯͷ͋ΔํͷೖࣾΛ͓͓ͪͯ͠Γ·͢ʂʂ
ςΩετ ࢀߟ ▸ HoG - http://www.vision.cs.chubu.ac.jp/joint_hog/pdf/HOG +Boosting_LN.pdf ▸ CNN based
model - http://www.iis.sinica.edu.tw/papers/song/18378-F.pdf ▸ DCGAN - http://arxiv.org/abs/1511.06434 - http://tech.vasily.jp/entry/fashion-deep-learning 18