Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
June 27, 2019
Technology
0
380
Practical DevOps for the busy data scientist
Tania Allard
June 27, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
43
2024_pydata_lndn.pdf
trallard
1
290
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
350
Mentored Sprints - 2023
trallard
0
290
Mentored Sprints 2022 - kickoff
trallard
3
340
Como participar en el mercado emergente del codigo abierto
trallard
4
350
El presente y futuro del computo cientifico con Python
trallard
0
310
Foss for fun and profit
trallard
3
380
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
230
Other Decks in Technology
See All in Technology
あなたの知らないDateのひみつ / The Secret of "Date" You Haven't known #tqrk16
expajp
0
120
Data Hubグループ 紹介資料
sansan33
PRO
0
2.3k
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
240
シンプルを極める。アンチパターンなDB設計の本質
facilo_inc
2
1.6k
freeeにおけるファンクションを超えた一気通貫でのAI活用
jaxx2104
3
1.4k
Bakuraku Engineering Team Deck
layerx
PRO
11
6.2k
Noを伝える技術2025: 爆速合意形成のためのNICOフレームワーク速習 #pmconf2025
aki_iinuma
2
1.7k
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
190
タグ付きユニオン型を便利に使うテクニックとその注意点
uhyo
2
710
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
660
AIにおける自由の追求
shujisado
3
480
32のキーワードで学ぶ はじめての耐量子暗号(PQC) / Getting Started with Post-Quantum Cryptography in 32 keywords
quiver
0
260
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
380
KATA
mclloyd
PRO
32
15k
A better future with KSS
kneath
240
18k
Designing for humans not robots
tammielis
254
26k
We Have a Design System, Now What?
morganepeng
54
7.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
Tania Allard, PhD @ixek Developer Advocate @Microsoft Practical DevOps for
the busy Data Scientist http://bit.ly/MancML-trallard
2 A bit of background never hurt anyone About us
3 @ixek
4 @ixek
5 Top top view… @ixek Stable model/application ready to be
productised R&D - develop, iterate fast, usually local or cloud Magic Is it live??
6 How I would like everything to work…. @ixek It
works…. now send it over to production R&D - develop, iterate fast, usually local or cloud Push code, tag, tag data* Worry free deployment! Wait and relax
7 @ixek
8
9 @ixek DevOps / DataOps / MLOps
10 DevOps is the union of people, process, and products
to enable continuous delivery of value into production What is DevOps anyway? @ixek
11 Sort of DevOps applied to data-intensive applications. Requires close
collaboration between engineers, data scientists, architects, data engineers and Ops. How does it fit for DS? @ixek
12 @ixek Aims to reduce the end-to-end cycle time of
data analytics/science from the origin of ideas to the creation of data artifacts.
13
14
15 7 steps to DS
16 Keep everything in source control - but allow for
experimentation
17
18 Standardize and define your environments in code (conda, pipfiles,
Docker)
19 Use canonical data sources - always know what data
you are using (where it comes and goes)
20
21 Automate wisely
22 https://xkcd.com/1205/
23
24 Use pipelines for repeatability and explainability
25 Deploy portable models
26
27 Test continuously and monitor production: shift left
28
29 Thank you @ixek http://bit.ly/MancML-trallard