$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
June 27, 2019
Technology
0
390
Practical DevOps for the busy data scientist
Tania Allard
June 27, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
49
2024_pydata_lndn.pdf
trallard
1
300
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
350
Mentored Sprints - 2023
trallard
0
300
Mentored Sprints 2022 - kickoff
trallard
3
340
Como participar en el mercado emergente del codigo abierto
trallard
4
350
El presente y futuro del computo cientifico con Python
trallard
0
310
Foss for fun and profit
trallard
3
390
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
240
Other Decks in Technology
See All in Technology
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9.9k
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.2k
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
業務の煩悩を祓うAI活用術108選 / AI 108 Usages
smartbank
6
5.8k
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
140
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
270
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
990
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
20
7.7k
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
110
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
140
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
220
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Designing for Timeless Needs
cassininazir
0
93
GraphQLとの向き合い方2022年版
quramy
50
14k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Designing Experiences People Love
moore
143
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
How to build a perfect <img>
jonoalderson
0
4.7k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
250
Scaling GitHub
holman
464
140k
Transcript
Tania Allard, PhD @ixek Developer Advocate @Microsoft Practical DevOps for
the busy Data Scientist http://bit.ly/MancML-trallard
2 A bit of background never hurt anyone About us
3 @ixek
4 @ixek
5 Top top view… @ixek Stable model/application ready to be
productised R&D - develop, iterate fast, usually local or cloud Magic Is it live??
6 How I would like everything to work…. @ixek It
works…. now send it over to production R&D - develop, iterate fast, usually local or cloud Push code, tag, tag data* Worry free deployment! Wait and relax
7 @ixek
8
9 @ixek DevOps / DataOps / MLOps
10 DevOps is the union of people, process, and products
to enable continuous delivery of value into production What is DevOps anyway? @ixek
11 Sort of DevOps applied to data-intensive applications. Requires close
collaboration between engineers, data scientists, architects, data engineers and Ops. How does it fit for DS? @ixek
12 @ixek Aims to reduce the end-to-end cycle time of
data analytics/science from the origin of ideas to the creation of data artifacts.
13
14
15 7 steps to DS
16 Keep everything in source control - but allow for
experimentation
17
18 Standardize and define your environments in code (conda, pipfiles,
Docker)
19 Use canonical data sources - always know what data
you are using (where it comes and goes)
20
21 Automate wisely
22 https://xkcd.com/1205/
23
24 Use pipelines for repeatability and explainability
25 Deploy portable models
26
27 Test continuously and monitor production: shift left
28
29 Thank you @ixek http://bit.ly/MancML-trallard