Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Tania Allard
June 27, 2019
Technology
0
390
Practical DevOps for the busy data scientist
Tania Allard
June 27, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
54
2024_pydata_lndn.pdf
trallard
1
300
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
360
Mentored Sprints - 2023
trallard
0
310
Mentored Sprints 2022 - kickoff
trallard
3
350
Como participar en el mercado emergente del codigo abierto
trallard
4
370
El presente y futuro del computo cientifico con Python
trallard
0
320
Foss for fun and profit
trallard
3
400
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
240
Other Decks in Technology
See All in Technology
配列に見る bash と zsh の違い
kazzpapa3
1
140
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
230
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
Context Engineeringの取り組み
nutslove
0
340
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
280
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
650
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.3k
Webhook best practices for rock solid and resilient deployments
glaforge
1
290
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Exploring anti-patterns in Rails
aemeredith
2
250
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
Everyday Curiosity
cassininazir
0
130
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
140
Transcript
Tania Allard, PhD @ixek Developer Advocate @Microsoft Practical DevOps for
the busy Data Scientist http://bit.ly/MancML-trallard
2 A bit of background never hurt anyone About us
3 @ixek
4 @ixek
5 Top top view… @ixek Stable model/application ready to be
productised R&D - develop, iterate fast, usually local or cloud Magic Is it live??
6 How I would like everything to work…. @ixek It
works…. now send it over to production R&D - develop, iterate fast, usually local or cloud Push code, tag, tag data* Worry free deployment! Wait and relax
7 @ixek
8
9 @ixek DevOps / DataOps / MLOps
10 DevOps is the union of people, process, and products
to enable continuous delivery of value into production What is DevOps anyway? @ixek
11 Sort of DevOps applied to data-intensive applications. Requires close
collaboration between engineers, data scientists, architects, data engineers and Ops. How does it fit for DS? @ixek
12 @ixek Aims to reduce the end-to-end cycle time of
data analytics/science from the origin of ideas to the creation of data artifacts.
13
14
15 7 steps to DS
16 Keep everything in source control - but allow for
experimentation
17
18 Standardize and define your environments in code (conda, pipfiles,
Docker)
19 Use canonical data sources - always know what data
you are using (where it comes and goes)
20
21 Automate wisely
22 https://xkcd.com/1205/
23
24 Use pipelines for repeatability and explainability
25 Deploy portable models
26
27 Test continuously and monitor production: shift left
28
29 Thank you @ixek http://bit.ly/MancML-trallard