Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Tania Allard
June 27, 2019
Technology
0
390
Practical DevOps for the busy data scientist
Tania Allard
June 27, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
54
2024_pydata_lndn.pdf
trallard
1
300
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
360
Mentored Sprints - 2023
trallard
0
310
Mentored Sprints 2022 - kickoff
trallard
3
350
Como participar en el mercado emergente del codigo abierto
trallard
4
370
El presente y futuro del computo cientifico con Python
trallard
0
320
Foss for fun and profit
trallard
3
400
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
240
Other Decks in Technology
See All in Technology
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.6k
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
410
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
140
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
230
Cosmos World Foundation Model Platform for Physical AI
takmin
0
880
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
130
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.3k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
240
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
180
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
100
Featured
See All Featured
30 Presentation Tips
portentint
PRO
1
220
Prompt Engineering for Job Search
mfonobong
0
160
Information Architects: The Missing Link in Design Systems
soysaucechin
0
770
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
320
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
310
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
For a Future-Friendly Web
brad_frost
182
10k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
Tania Allard, PhD @ixek Developer Advocate @Microsoft Practical DevOps for
the busy Data Scientist http://bit.ly/MancML-trallard
2 A bit of background never hurt anyone About us
3 @ixek
4 @ixek
5 Top top view… @ixek Stable model/application ready to be
productised R&D - develop, iterate fast, usually local or cloud Magic Is it live??
6 How I would like everything to work…. @ixek It
works…. now send it over to production R&D - develop, iterate fast, usually local or cloud Push code, tag, tag data* Worry free deployment! Wait and relax
7 @ixek
8
9 @ixek DevOps / DataOps / MLOps
10 DevOps is the union of people, process, and products
to enable continuous delivery of value into production What is DevOps anyway? @ixek
11 Sort of DevOps applied to data-intensive applications. Requires close
collaboration between engineers, data scientists, architects, data engineers and Ops. How does it fit for DS? @ixek
12 @ixek Aims to reduce the end-to-end cycle time of
data analytics/science from the origin of ideas to the creation of data artifacts.
13
14
15 7 steps to DS
16 Keep everything in source control - but allow for
experimentation
17
18 Standardize and define your environments in code (conda, pipfiles,
Docker)
19 Use canonical data sources - always know what data
you are using (where it comes and goes)
20
21 Automate wisely
22 https://xkcd.com/1205/
23
24 Use pipelines for repeatability and explainability
25 Deploy portable models
26
27 Test continuously and monitor production: shift left
28
29 Thank you @ixek http://bit.ly/MancML-trallard