Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
920
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
29
2024_pydata_lndn.pdf
trallard
1
280
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
320
Mentored Sprints - 2023
trallard
0
280
Mentored Sprints 2022 - kickoff
trallard
3
330
Como participar en el mercado emergente del codigo abierto
trallard
4
340
El presente y futuro del computo cientifico con Python
trallard
0
300
Foss for fun and profit
trallard
3
380
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
220
Other Decks in Programming
See All in Programming
Swift Concurrency - 状態監視の罠
objectiveaudio
2
460
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
7
1.6k
フロントエンド開発に役立つクライアントプログラム共通のノウハウ / Universal client-side programming best practices for frontend development
nrslib
7
3.9k
iOS 17で追加されたSubscriptionStoreView を利用して5分でサブスク実装チャレンジ
natmark
0
610
10年もののAPIサーバーにおけるCI/CDの改善の奮闘
mbook
0
780
AIで開発生産性を上げる個人とチームの取り組み
taniigo
0
130
Cloudflare AgentsとAI SDKでAIエージェントを作ってみた
briete
0
110
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
140
タスクの特性や不確実性に応じた最適な作業スタイルの選択(ペアプロ・モブプロ・ソロプロ)と実践 / Optimal Work Style Selection: Pair, Mob, or Solo Programming.
honyanya
3
140
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
180
CSC509 Lecture 05
javiergs
PRO
0
300
Pythonスレッドとは結局何なのか? CPython実装から見るNoGIL時代の変化
curekoshimizu
4
1.4k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Code Review Best Practice
trishagee
72
19k
It's Worth the Effort
3n
187
28k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Code Reviewing Like a Champion
maltzj
525
40k
Making Projects Easy
brettharned
119
6.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Optimizing for Happiness
mojombo
379
70k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]