Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
900
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
260
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
300
Mentored Sprints - 2023
trallard
0
260
Mentored Sprints 2022 - kickoff
trallard
3
310
Como participar en el mercado emergente del codigo abierto
trallard
4
320
El presente y futuro del computo cientifico con Python
trallard
0
280
Foss for fun and profit
trallard
3
360
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
210
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
670
Other Decks in Programming
See All in Programming
Blazing Fast UI Development with Compose Hot Reload (droidcon New York 2025)
zsmb
1
120
地方に住むエンジニアの残酷な現実とキャリア論
ichimichi
2
640
Datadog RUM 本番導入までの道
shinter61
1
310
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
290
Java on Azure で LangGraph!
kohei3110
0
160
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
790
関数型まつり2025登壇資料「関数プログラミングと再帰」
taisontsukada
2
840
「Cursor/Devin全社導入の理想と現実」のその後
saitoryc
0
110
ReadMoreTextView
fornewid
1
450
AIコーディング道場勉強会#2 君(エンジニア)たちはどう生きるか
misakiotb
1
240
A2A プロトコルを試してみる
azukiazusa1
2
890
Enterprise Web App. Development (2): Version Control Tool Training Ver. 5.1
knakagawa
1
120
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
RailsConf 2023
tenderlove
30
1.1k
Building Adaptive Systems
keathley
43
2.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
790
A Tale of Four Properties
chriscoyier
160
23k
A designer walks into a library…
pauljervisheath
206
24k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
GraphQLとの向き合い方2022年版
quramy
46
14k
Facilitating Awesome Meetings
lara
54
6.4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]