$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
930
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
42
2024_pydata_lndn.pdf
trallard
1
290
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
340
Mentored Sprints - 2023
trallard
0
290
Mentored Sprints 2022 - kickoff
trallard
3
340
Como participar en el mercado emergente del codigo abierto
trallard
4
350
El presente y futuro del computo cientifico con Python
trallard
0
310
Foss for fun and profit
trallard
3
380
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
230
Other Decks in Programming
See All in Programming
TypeScript 5.9 で使えるようになった import defer でパフォーマンス最適化を実現する
bicstone
1
970
Module Harmony
petamoriken
2
610
CSC305 Lecture 17
javiergs
PRO
0
270
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
170
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
2
990
『実践MLOps』から学ぶ DevOps for ML
nsakki55
2
540
JJUG CCC 2025 Fall: Virtual Thread Deep Dive
ternbusty
3
510
[SF Ruby Conf 2025] Rails X
palkan
0
410
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
120
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
3
700
関数実行の裏側では何が起きているのか?
minop1205
1
410
React Native New Architecture 移行実践報告
taminif
1
130
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
76
5.2k
Done Done
chrislema
186
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Language of Interfaces
destraynor
162
25k
Bash Introduction
62gerente
615
210k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Six Lessons from altMBA
skipperchong
29
4.1k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
4 Signs Your Business is Dying
shpigford
186
22k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]