Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
970
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
54
2024_pydata_lndn.pdf
trallard
1
300
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
360
Mentored Sprints - 2023
trallard
0
300
Mentored Sprints 2022 - kickoff
trallard
3
350
Como participar en el mercado emergente del codigo abierto
trallard
4
360
El presente y futuro del computo cientifico con Python
trallard
0
320
Foss for fun and profit
trallard
3
400
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
240
Other Decks in Programming
See All in Programming
Fluid Templating in TYPO3 14
s2b
0
120
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
140
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
110
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
180
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
180
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
650
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
1.4k
CSC307 Lecture 03
javiergs
PRO
1
490
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
670
Fragmented Architectures
denyspoltorak
0
140
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
170
Grafana:建立系統全知視角的捷徑
blueswen
0
320
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
Side Projects
sachag
455
43k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
130
How to build a perfect <img>
jonoalderson
1
4.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
630
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Code Reviewing Like a Champion
maltzj
527
40k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]