Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
950
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
47
2024_pydata_lndn.pdf
trallard
1
290
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
350
Mentored Sprints - 2023
trallard
0
300
Mentored Sprints 2022 - kickoff
trallard
3
340
Como participar en el mercado emergente del codigo abierto
trallard
4
350
El presente y futuro del computo cientifico con Python
trallard
0
310
Foss for fun and profit
trallard
3
390
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
230
Other Decks in Programming
See All in Programming
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
120
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
250
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
280
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
250
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.6k
俺流レスポンシブコーディング 2025
tak_dcxi
14
9.3k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
0
230
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
1
320
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
140
チームをチームにするEM
hitode909
0
360
Featured
See All Featured
The Cult of Friendly URLs
andyhume
79
6.7k
For a Future-Friendly Web
brad_frost
180
10k
The Curious Case for Waylosing
cassininazir
0
190
KATA
mclloyd
PRO
33
15k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
ラッコキーワード サービス紹介資料
rakko
0
1.7M
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
210
A Tale of Four Properties
chriscoyier
162
23k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Building AI with AI
inesmontani
PRO
1
570
Leadership Guide Workshop - DevTernity 2021
reverentgeek
0
160
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]