Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
910
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
270
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
310
Mentored Sprints - 2023
trallard
0
270
Mentored Sprints 2022 - kickoff
trallard
3
320
Como participar en el mercado emergente del codigo abierto
trallard
4
330
El presente y futuro del computo cientifico con Python
trallard
0
290
Foss for fun and profit
trallard
3
370
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
220
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
690
Other Decks in Programming
See All in Programming
実践 Dev Containers × Claude Code
touyu
1
170
Vibe Codingの幻想を超えて-生成AIを現場で使えるようにするまでの泥臭い話.ai
fumiyakume
21
10k
新世界の理解
koriym
0
130
コーディングは技術者(エンジニア)の嗜みでして / Learning the System Development Mindset from Rock Lady
mackey0225
2
360
ライブ配信サービスの インフラのジレンマ -マルチクラウドに至ったワケ-
mirrativ
1
140
[DevinMeetupTokyo2025] コード書かせないDevinの使い方
takumiyoshikawa
2
280
AHC051解法紹介
eijirou
0
400
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
4
570
令和最新版手のひらコンピュータ
koba789
13
7.4k
バイブスあるコーディングで ~PHP~ 便利ツールをつくるプラクティス
uzulla
1
330
Nuances on Kubernetes - RubyConf Taiwan 2025
envek
0
140
サイトを作ったらNFCタグキーホルダーを爆速で作れ!
yuukis
0
100
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
A designer walks into a library…
pauljervisheath
207
24k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Music & Morning Musume
bryan
46
6.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
The Pragmatic Product Professional
lauravandoore
36
6.8k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]