Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
860
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
220
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
260
Mentored Sprints - 2023
trallard
0
230
Mentored Sprints 2022 - kickoff
trallard
3
280
Como participar en el mercado emergente del codigo abierto
trallard
4
290
El presente y futuro del computo cientifico con Python
trallard
0
260
Foss for fun and profit
trallard
3
340
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
190
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
640
Other Decks in Programming
See All in Programming
自分ひとりから始められる生産性向上の取り組み #でぃーぷらすオオサカ
irof
8
2.8k
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
170
Formの複雑さに立ち向かう
bmthd
1
840
JavaScriptツール群「UnJS」を5分で一気に駆け巡る!
k1tikurisu
9
1.8k
AWSマネコンに複数のアカウントで入れるようになりました
yuhta28
2
160
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
kasacchiful
0
160
Honoをフロントエンドで使う 3つのやり方
yusukebe
7
3.2k
iOSエンジニアから始める visionOS アプリ開発
nao_randd
3
130
動作確認やテストで漏れがちな観点3選
starfish719
6
1k
Rails アプリ地図考 Flush Cut
makicamel
1
120
個人アプリを2年ぶりにアプデしたから褒めて / I just updated my personal app, praise me!
lovee
0
340
チームリードになって変わったこと
isaka1022
0
200
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
244
12k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Visualization
eitanlees
146
15k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Pragmatic Product Professional
lauravandoore
32
6.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Speed Design
sergeychernyshev
27
790
Build your cross-platform service in a week with App Engine
jlugia
229
18k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]