Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
960
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
49
2024_pydata_lndn.pdf
trallard
1
300
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
350
Mentored Sprints - 2023
trallard
0
300
Mentored Sprints 2022 - kickoff
trallard
3
340
Como participar en el mercado emergente del codigo abierto
trallard
4
350
El presente y futuro del computo cientifico con Python
trallard
0
310
Foss for fun and profit
trallard
3
390
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
240
Other Decks in Programming
See All in Programming
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
180
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.4k
gunshi
kazupon
1
120
GoLab2025 Recap
kuro_kurorrr
0
780
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
450
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.4k
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
180
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
610
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
630
愛される翻訳の秘訣
kishikawakatsumi
3
350
認証・認可の基本を学ぼう後編
kouyuume
0
250
Featured
See All Featured
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
520
First, design no harm
axbom
PRO
1
1.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
WENDY [Excerpt]
tessaabrams
8
35k
How to build a perfect <img>
jonoalderson
0
4.7k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
260
Mobile First: as difficult as doing things right
swwweet
225
10k
Darren the Foodie - Storyboard
khoart
PRO
0
2k
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
57
Crafting Experiences
bethany
0
22
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]