Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
920
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
22
2024_pydata_lndn.pdf
trallard
1
270
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
310
Mentored Sprints - 2023
trallard
0
270
Mentored Sprints 2022 - kickoff
trallard
3
330
Como participar en el mercado emergente del codigo abierto
trallard
4
330
El presente y futuro del computo cientifico con Python
trallard
0
300
Foss for fun and profit
trallard
3
370
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
220
Other Decks in Programming
See All in Programming
ProxyによるWindow間RPC機構の構築
syumai
3
1.2k
アルテニア コンサル/ITエンジニア向け 採用ピッチ資料
altenir
0
110
Tool Catalog Agent for Bedrock AgentCore Gateway
licux
7
2.5k
AIコーディングAgentとの向き合い方
eycjur
0
280
1から理解するWeb Push
dora1998
7
1.9k
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
440
AI時代のUIはどこへ行く?
yusukebe
18
9.1k
アセットのコンパイルについて
ojun9
0
130
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
310
速いWebフレームワークを作る
yusukebe
5
1.7k
旅行プランAIエージェント開発の裏側
ippo012
2
930
実用的なGOCACHEPROG実装をするために / golang.tokyo #40
mazrean
1
290
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
3
58
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Producing Creativity
orderedlist
PRO
347
40k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
We Have a Design System, Now What?
morganepeng
53
7.8k
Embracing the Ebb and Flow
colly
87
4.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
A better future with KSS
kneath
239
17k
BBQ
matthewcrist
89
9.8k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]