Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
860
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
200
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
250
Mentored Sprints - 2023
trallard
0
230
Mentored Sprints 2022 - kickoff
trallard
3
270
Como participar en el mercado emergente del codigo abierto
trallard
4
290
El presente y futuro del computo cientifico con Python
trallard
0
250
Foss for fun and profit
trallard
3
330
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
190
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
630
Other Decks in Programming
See All in Programming
MCP with Cloudflare Workers
yusukebe
2
300
iOS開発におけるCopilot For XcodeとCode Completion / copilot for xcode
fuyan777
1
1.3k
Stackless и stackful? Корутины и асинхронность в Go
lamodatech
0
1.3k
今年一番支援させていただいたのは認証系サービスでした
satoshi256kbyte
1
280
PHPカンファレンス 2024|共創を加速するための若手の技術挑戦
weddingpark
0
120
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
6
690
2025.01.17_Sansan × DMM.swift
riofujimon
1
210
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
230
月刊 競技プログラミングをお仕事に役立てるには
terryu16
1
1.2k
ChatGPT とつくる PHP で OS 実装
memory1994
PRO
3
170
QA環境で誰でも自由自在に現在時刻を操って検証できるようにした話
kalibora
1
130
traP の部内 ISUCON とそれを支えるポータル / PISCON Portal
ikura_hamu
0
170
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
113
50k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
172
50k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
230
52k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
Adopting Sorbet at Scale
ufuk
74
9.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
It's Worth the Effort
3n
183
28k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]