Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
860
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
220
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
260
Mentored Sprints - 2023
trallard
0
230
Mentored Sprints 2022 - kickoff
trallard
3
280
Como participar en el mercado emergente del codigo abierto
trallard
4
300
El presente y futuro del computo cientifico con Python
trallard
0
260
Foss for fun and profit
trallard
3
340
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
190
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
640
Other Decks in Programming
See All in Programming
ソフトウェアエンジニアの成長
masuda220
PRO
11
1.5k
データベースのオペレーターであるCloudNativePGがStatefulSetを使わない理由に迫る
nnaka2992
0
150
Ruby on cygwin 2025-02
fd0
0
150
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
160
AWS Organizations で実現する、 マルチ AWS アカウントのルートユーザー管理からの脱却
atpons
0
150
社内フレームワークとその依存性解決 / in-house framework and its dependency management
vvakame
1
560
CDK開発におけるコーディング規約の運用
yamanashi_ren01
2
130
個人アプリを2年ぶりにアプデしたから褒めて / I just updated my personal app, praise me!
lovee
0
350
Linux && Docker 研修/Linux && Docker training
forrep
24
4.5k
XStateを用いた堅牢なReact Components設計~複雑なClient Stateをシンプルに~ @React Tokyo ミートアップ #2
kfurusho
1
910
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
120
2,500万ユーザーを支えるSREチームの6年間のスクラムのカイゼン
honmarkhunt
6
5.3k
Featured
See All Featured
Side Projects
sachag
452
42k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Six Lessons from altMBA
skipperchong
27
3.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Become a Pro
speakerdeck
PRO
26
5.1k
It's Worth the Effort
3n
184
28k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Being A Developer After 40
akosma
89
590k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]