Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
920
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
Keeping Research Software Relevant for Tomorrow
trallard
0
22
2024_pydata_lndn.pdf
trallard
1
270
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
310
Mentored Sprints - 2023
trallard
0
270
Mentored Sprints 2022 - kickoff
trallard
3
330
Como participar en el mercado emergente del codigo abierto
trallard
4
330
El presente y futuro del computo cientifico con Python
trallard
0
300
Foss for fun and profit
trallard
3
370
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
220
Other Decks in Programming
See All in Programming
今から始めるClaude Code入門〜AIコーディングエージェントの歴史と導入〜
nokomoro3
0
180
はじめてのMaterial3 Expressive
ym223
2
740
MCPとデザインシステムに立脚したデザインと実装の融合
yukukotani
4
1.4k
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
760
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
320
Laravel Boost 超入門
fire_arlo
3
220
AI時代のUIはどこへ行く?
yusukebe
18
8.9k
Reading Rails 1.0 Source Code
okuramasafumi
0
230
1から理解するWeb Push
dora1998
7
1.9k
プロパティベーステストによるUIテスト: LLMによるプロパティ定義生成でエッジケースを捉える
tetta_pdnt
0
1.7k
為你自己學 Python - 冷知識篇
eddie
1
350
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
180
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Documentation Writing (for coders)
carmenintech
74
5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Agile that works and the tools we love
rasmusluckow
330
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
GitHub's CSS Performance
jonrohan
1032
460k
Code Review Best Practice
trishagee
70
19k
4 Signs Your Business is Dying
shpigford
184
22k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek
[email protected]