Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Practical DevOps for the busy data scientist
Search
Tania Allard
October 09, 2019
Programming
1
870
Practical DevOps for the busy data scientist
Tania Allard
October 09, 2019
Tweet
Share
More Decks by Tania Allard
See All by Tania Allard
2024_pydata_lndn.pdf
trallard
1
230
The RSE hiring and career progression pipelines: Top tips to navigate them efficiently
trallard
0
270
Mentored Sprints - 2023
trallard
0
240
Mentored Sprints 2022 - kickoff
trallard
3
290
Como participar en el mercado emergente del codigo abierto
trallard
4
300
El presente y futuro del computo cientifico con Python
trallard
0
260
Foss for fun and profit
trallard
3
350
Open source for fun and profit: rethinking the long road of sustainability.
trallard
0
200
Docker and Python: making them play nicely and securely for Ml and DS
trallard
1
650
Other Decks in Programming
See All in Programming
MCP世界への招待: AIエンジニアが創る次世代エージェント連携の世界
gunta
1
340
보일러플레이트 코드가 진짜 나쁜 건가요?
gaeun5744
0
360
CRE Meetup!ユーザー信頼性を支えるエンジニアリング実践例の発表資料です
tmnb
0
140
イベントソーシングによってインピーダンスミスマッチから解放された話
tkawae
1
310
マルチアカウント環境での、そこまでがんばらない RI/SP 運用設計
wa6sn
0
220
Going Structural with Named Tuples
bishabosha
0
130
リアクティブシステムの変遷から理解するalien-signals / Learning alien-signals from the evolution of reactive systems
yamanoku
1
170
なぜselectはselectではないのか
taiyow
2
270
Denoでフロントエンド開発 2025年春版 / Frontend Development with Deno (Spring 2025)
petamoriken
1
1.3k
Compose Navigation実装の見通しを良くする
hiroaki404
0
170
AtCoder Heuristic First-step Vol.1 講義スライド
terryu16
2
940
eBPF Updates (March 2025)
kentatada
0
120
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
Being A Developer After 40
akosma
89
590k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
GraphQLとの向き合い方2022年版
quramy
45
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
610
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.4k
Building an army of robots
kneath
304
45k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
Practical DevOps for the busy data Scientist
bit.ly/PyConDE-mlops Slides
What you’ll learn 01 02 Why MLOps/ DevOps ? Who
is responsible? 03 04 Getting started Getting from A to B
About Me
Software engineering Algorithm Data Answers @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Algorithm @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model @ixek bit.ly/PyConDE-mlops @ixek bit.ly/PyConDE-mlops
Machine learning Answers Data Model Answers Predictions @ixek bit.ly/PyConDE-mlops
The data cycle Magic? R&D Generation @ixek bit.ly/PyConDE-mlops
Anyone? @ixek bit.ly/PyConDE-mlops
A common scenario @ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
If you had one wish? @ixek bit.ly/PyConDE-mlops
Replacing the magic ML Ops and robust pipelines R&D Generation
@ixek bit.ly/PyConDE-mlops
How skills are perceived @ixek bit.ly/PyConDE-mlops
Better @ixek bit.ly/PyConDE-mlops
How they really are @ixek bit.ly/PyConDE-mlops
DevOps is the union of people, process, and products to
enable continuous delivery of value into production - Donovan Brown What is devops @ixek bit.ly/PyConDE-mlops
MlOps Aims to reduce the end-to-end cycle time and friction
of data analytics/science from the origin of ideas to the creation of data artifacts. What is devops @ixek bit.ly/PyConDE-mlops
But I do not work in a big company with
many ML engineers @ixek bit.ly/PyConDE-mlops
Build your own MLOps Platform @ixek bit.ly/PyConDE-mlops
None
None
Practical steps @ixek bit.ly/PyConDE-mlops
We have the notebooks in source control @ixek bit.ly/PyConDE-mlops
Your saviour Source control • Code and comments only (not
Jupyter output) • Plus every part of the pipeline • And Infrastructure and dependencies • And maybe a subset of data @ixek bit.ly/PyConDE-mlops
Everything should be in source control!! Except your training data
which should be a known, shared data source Do not touch the raw data! Not even with a stick Your saviour @ixek bit.ly/PyConDE-mlops
Deterministic environments @ixek bit.ly/PyConDE-mlops
Whatever that environment is @ixek bit.ly/PyConDE-mlops
Your laptop is not a production environment… so ensure reproducibility
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Use pipelines for repeatability and reproducibility @ixek bit.ly/PyConDE-mlops
ml.azure.com
@ixek bit.ly/PyConDE-mlops
@ixek bit.ly/PyConDE-mlops
Automate wisely @ixek bit.ly/PyConDE-mlops
Adopt automation • Orchestration for Continuous Integration and Continuous Delivery
• Gates, tasks, and processes for quality • Integration with other services • Triggers on code and non-code events @ixek bit.ly/PyConDE-mlops
Complete pipeline @ixek bit.ly/PyConDE-mlops
Kubeflow example https://www.kubeflow.org/docs/azure/azureendtoend/ @ixek bit.ly/PyConDE-mlops
Build pipeline- https://azure.microsoft.com/en-us/services/devops/https://azure.microsoft.com/e n-us/services/devops/
Code event trigger @ixek bit.ly/PyConDE-mlops
Release / deploy @ixek bit.ly/PyConDE-mlops
In brief Deterministic environments Use pipelines Continuous integration and delivery
Source control (done right) Code, infrastructure, everything! Ensure production readiness For repeatable workflows Detect errors early and seamless deployments @ixek bit.ly/PyConDE-mlops
Want to learn more? • ml.azure.com • https://azure.microsoft.com/en-us/services/devops/ • https://docs.microsoft.com/en-us/azure/machine-learning/ser
vice/concept-ml-pipelines @ixek bit.ly/PyConDE-mlops
Come talk to us! @ ixek trallard@bitsandchips.me