helps catching up with the burst At 150 MHz, simultaneous with GRB if DM > 265 for 48.8 s delay after burst 184 ms/DM @ 150 MHz 1660 ms/DM @ 50 MHz Theory perspective “True” prompt emission (Macquart 2007) Precursor emission (Hansen & Lyutikov 2001) y e 0:1 D 100 Mpc 22 B2=3 15 a25=2 7 :
6 n the range of the larger radio telescopes operating gh somewhat less than the sensitivities of current nt searches. everal complications that may preclude generation of on. If the neutron star is moving through a pre- ma generated by the previous orbital cycles the may be quenched, there will be no need to accelerate les and the beam luminosity may drop to zero. In formation of positronium in the magnetic fields 4 Â 1012 G (Usov & Melrose 1996; Arons 1998) may the radio emission. re, the generated radio emission may be absorbed in rsphere. We expect that non-resonant Thomson the low frequency
n ! nB radio emission will not because of the strong suppression s sT
n=nB 2 ering cross-section by the magnetic field at low PAI R P LAS M A Most of the energy liberated by the strong electric fields of Section 2 is not radiated, but is instead released into the magnetosphere of the slowly rotating magnetar in the form of Alfve Ân waves and a dense pair plasma. The energy release (see equation 5) is a significant fraction of the local magnetic energy density. In such a case, a wind, driven either by hydromagnetic or plasma pressure is likely to result (Paczynski 1986, 1990; Melia & Fatuzzo 1995; Katz 1996) while some will remain trapped, in a fashion similar to that of the Soft Gamma Repeater picture of a magnetically confined pair plasma (Thompson & Duncan 1995). We envisage that the plasma released into regions of decreasing field strength powers the wind while plasma released into regions of increasing field strength will be trapped. Fig. 1 shows a schematic version of our scenario. Let us consider first the case of the wind. A release of energy at the rate given by equation (5) results in a compactness parameter h L=ac , 107B2 15 a27 : Thus, this is the same situation envisaged in cosmological models for gamma-ray bursts (Goodman 1986; ematic version of the energy extraction process. The motion of the companion through the magnetar field induces a plasma flow from the o the magnetosphere. The pressure of this flow will drive a relativistic wind in those regions where the flow moves into a regime of weaker plasma remains trapped in the case when it flows into a stronger field regime. The hot pair plasma will ablate some baryons off the surface of r, providing a baryon-loaded sheath which regulates the cooling of the trapped plasma. MNRAS 322, 695±701 Hansen & Lyutikov 2003 Motivation to use the TBB