Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
計算量オーダーの話
Search
tsuda.a
May 25, 2024
Programming
1
390
計算量オーダーの話
計算量オーダーについて説明してみました。
tsuda.a
May 25, 2024
Tweet
Share
More Decks by tsuda.a
See All by tsuda.a
マジカルインクリメントと指数表記
tsudaahr
0
190
バックアップしていますか?
tsudaahr
0
120
RDB以前のファイル設計の話でもしようか(ぇ
tsudaahr
0
120
NPUわからん
tsudaahr
0
180
クラウド初学者が抱える不安について
tsudaahr
0
270
キューとは何か
tsudaahr
0
230
等幅は死んだ(ぇ
tsudaahr
0
99
いくら眺めてもエラーの理由がわからないコードについて
tsudaahr
0
180
何のために文字数をカウントするのか?
tsudaahr
0
100
Other Decks in Programming
See All in Programming
PHPに関数型の魂を宿す〜PHP 8.5 で実現する堅牢なコードとは〜 #phpcon_hiroshima / phpcon-hiroshima-2025
shogogg
1
290
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
9
1.7k
その面倒な作業、「Dart」にやらせませんか? Flutter開発者のための業務効率化
yordgenome03
1
130
CSC305 Lecture 05
javiergs
PRO
0
230
Building, Deploying, and Monitoring Ruby Web Applications with Falcon (Kaigi on Rails 2025)
ioquatix
4
2.3k
EMこそClaude Codeでコード調査しよう
shibayu36
0
240
All About Angular's New Signal Forms
manfredsteyer
PRO
0
190
Google Opalで使える37のライブラリ
mickey_kubo
2
110
Android16 Migration Stories ~Building a Pattern for Android OS upgrades~
reoandroider
0
130
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
220
AIと人間の共創開発!OSSで試行錯誤した開発スタイル
mae616
2
740
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
210
Featured
See All Featured
Building an army of robots
kneath
306
46k
A Tale of Four Properties
chriscoyier
161
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
920
Building Applications with DynamoDB
mza
96
6.7k
Being A Developer After 40
akosma
91
590k
It's Worth the Effort
3n
187
28k
Agile that works and the tools we love
rasmusluckow
331
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
980
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Six Lessons from altMBA
skipperchong
29
4k
Transcript
計算量オーダーの話 LTDD 2024-5 #2 中国地方DB勉強会 #1 @tsuda_ahr
最初に免責 • 概念的なわかりやすさ(?)を重視して、誇張した表現を多用しています。 • いやその表現、誇張を超えて嘘だよね、みたいなのもあります。-_-; • なので正しくはこうだ!みたいなものは、各自調査/発信してください(汗
情報処理技術者試験の問題例 (1) https://www.ipa.go.jp/shiken/mondai-kaiotu/ug65p90000002h5m-att/2012h24a_fe_am_qs.pdf • 平成24年秋の基本情報技術者試験 午前問題より
情報処理技術者試験の問題例 (2) • 令和6年春 応用情報技術者試験 午後問題 問3 より
O(n), O(n2) ってなんだ? • 計算量の指標 • データが n 件あったとき、何回計算するか?
O記法、と言う • ランダウの記号、とも言うらしい。 https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%B3%E3%83%80%E3%82%A6%E3%81%AE%E8%A8%98%E5%8F%B7
たとえばこんなイメージ n=10 n=100 n=10000 O(1) 1回 1回 1回 O(n) 10回
100回 10000回 O(n2) 100回 10000回 1億回 O(log n) 4回 7回 14回 データの個数 計算回数 計算量 オーダー表記 O(n) O(n2) O(log n)
例1) 配列へのアクセス • 添え字を指定すれば一発でアクセスできるので、計算量オーダーは O(1) • 例)要素 5 のデータを参照したい 0
1 2 3 4 5 6 7 8 9 ・・・ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ
例2) 線形探索 • n 件あれば、n 回ループする可能性があるので、計算量オーダーは O(n) • 例) “HHHH”
を探したい (上の要素から順に探す) 0 1 2 3 4 5 6 7 8 9 ・・・ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ
ん?平均回数でみると、O(0.5n)になるのでは? • 係数部分は省略するらしいです。 • なので 0.000001n だろうと 10000000n だろうと O(n)
と表現する らしい。
例3) ソート(バブルソート) • 二重ループになるので、計算量オーダーは O(n2) n = len(body) for x
in range(0, n) : for y in range(1, n) : if (body[y - 1] > body[y]) : body[y - 1], body[y] = body[y], body[y - 1] 二重ループ Python によるコード例
ループのネストが増えると? • 三重ループだと O(n3), 四重ループだと O(n4)・・・という感じになってい きます。
log が出てくるケースは? • O(log n) とか O(n log n) とか書かれているのは何?
例4) 二分岐探索 • 二分岐探索について考えてみます。 注) 二分岐探索(Binary Tree)は、データベースでよくつかわれている B 木とは 違います。
前提 • HHHH を探したい。(=探索キー) • ただし、探索対象はソート済みとする。 • 探索対象は以下。 AAAA BBBB
CCCC DDDD EEEE FFFF GGGG HHHH 探索対象
探索方法 • まず真ん中あたりを決めて、そのデータと探索キーの大小を比較する。 • 小さければ前半を、大きければ後半を探す。 • それを一致するまで繰り返し行う。 AAAA BBBB CCCC
DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH 探索1回目 探索2回目 探索3回目 探索4回目
木構造で見るとこんな感じ • こういう木構造に見えるので「二分木」と呼ばれる AAAA BBBB CCCC DDDD EEEE FFFF GGGG
HHHH より小さい より大きい より小さい より小さい より大きい より大きい より大きい
探索回数は? • たとえばデータが 8 の場合、4 回の検索でたどりついた。 • 16 の場合は 5
回 • 32 の場合は 6 回 • 65536の場合は? →たぶん 17 回 • 16777216の場合は? →たぶん 25回 • ということは、n = 2x のデータに対して x + 1 回でたどり着いている。 • n から x を求めたい場合 x = log 2 (n) となる。
さてデータベースの場合 • 探索にかかる時間は、 • フルスキャン → O(n) • インデックススキャン →O(log
n) みたいな感じです。
つまり、 • 100万件のデータがあった場合の最悪ケースの探索回数は以下 注) 実際のインデックスは二分木ではなく B 木だったり、ディスクに記録されている インデックスデータすべてをいきなりメモリ上に展開するわけでもなかったり、 ディスクからメモリに展開するためのディスク I/O
があったりその他云々いろい ろあるので、上記のような単純な話ではありません(汗 実行計画 探索方法 探索回数 テーブルフルスキャン 線形探索 100万回 インデックススキャン 木による探索 20回
圧倒的じゃないかインデックスは! • よし、じゃあインデックスを貼りまくれば万事解決!!
そんなわけない(汗 • 二分木探索のとき、必要だったのは「ソートされた」データでした。 • つまりインデックスにデータを追加するとき、インデックスのデータはソートさ れた状態を維持しなくてはならない。 • ソートされた状態を維持したままデータを追加するのはコストがかかる。 • したがってインデックスを作ると、検索
(select) のときは早いけど、データ の挿入(insert)や更新(update) のときに激重になる。
なので • インデックスを貼る場合は、検索頻度と更新頻度を考慮して、貼るカラムを選 定する必要があります。
こちらからは以上です • 探索とかソートする際は計算量を気にしましょう。