Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
計算量オーダーの話
Search
tsuda.a
May 25, 2024
Programming
1
370
計算量オーダーの話
計算量オーダーについて説明してみました。
tsuda.a
May 25, 2024
Tweet
Share
More Decks by tsuda.a
See All by tsuda.a
マジカルインクリメントと指数表記
tsudaahr
0
150
バックアップしていますか?
tsudaahr
0
100
RDB以前のファイル設計の話でもしようか(ぇ
tsudaahr
0
110
NPUわからん
tsudaahr
0
160
クラウド初学者が抱える不安について
tsudaahr
0
230
キューとは何か
tsudaahr
0
210
等幅は死んだ(ぇ
tsudaahr
0
83
いくら眺めてもエラーの理由がわからないコードについて
tsudaahr
0
170
何のために文字数をカウントするのか?
tsudaahr
0
85
Other Decks in Programming
See All in Programming
List Unfolding - 'unfold' as the Computational Dual of 'fold', and how 'unfold' relates to 'iterate'"
philipschwarz
PRO
0
180
Datadog RUM 本番導入までの道
shinter61
1
200
Development of an App for Intuitive AI Learning - Blockly Summit 2025
teba_eleven
0
110
Javaのルールをねじ曲げろ!禁断の操作とその代償から学ぶメタプログラミング入門 / A Guide to Metaprogramming: Lessons from Forbidden Techniques and Their Price
nrslib
3
1.9k
事業戦略を理解してソフトウェアを設計する
masuda220
PRO
21
5.8k
実はすごいスピードで進化しているCSS
hayato_yokoyama
0
110
JSAI2025 RecSysChallenge2024 優勝報告
unonao
1
440
Elixir で IoT 開発、 Nerves なら簡単にできる!?
pojiro
1
100
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
130
Go Modules: From Basics to Beyond / Go Modulesの基本とその先へ
kuro_kurorrr
0
110
REST API設計の実践 – ベストプラクティスとその落とし穴
kentaroutakeda
2
360
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
16
3.6k
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
640
Faster Mobile Websites
deanohume
307
31k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
Documentation Writing (for coders)
carmenintech
71
4.9k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Transcript
計算量オーダーの話 LTDD 2024-5 #2 中国地方DB勉強会 #1 @tsuda_ahr
最初に免責 • 概念的なわかりやすさ(?)を重視して、誇張した表現を多用しています。 • いやその表現、誇張を超えて嘘だよね、みたいなのもあります。-_-; • なので正しくはこうだ!みたいなものは、各自調査/発信してください(汗
情報処理技術者試験の問題例 (1) https://www.ipa.go.jp/shiken/mondai-kaiotu/ug65p90000002h5m-att/2012h24a_fe_am_qs.pdf • 平成24年秋の基本情報技術者試験 午前問題より
情報処理技術者試験の問題例 (2) • 令和6年春 応用情報技術者試験 午後問題 問3 より
O(n), O(n2) ってなんだ? • 計算量の指標 • データが n 件あったとき、何回計算するか?
O記法、と言う • ランダウの記号、とも言うらしい。 https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%B3%E3%83%80%E3%82%A6%E3%81%AE%E8%A8%98%E5%8F%B7
たとえばこんなイメージ n=10 n=100 n=10000 O(1) 1回 1回 1回 O(n) 10回
100回 10000回 O(n2) 100回 10000回 1億回 O(log n) 4回 7回 14回 データの個数 計算回数 計算量 オーダー表記 O(n) O(n2) O(log n)
例1) 配列へのアクセス • 添え字を指定すれば一発でアクセスできるので、計算量オーダーは O(1) • 例)要素 5 のデータを参照したい 0
1 2 3 4 5 6 7 8 9 ・・・ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ
例2) 線形探索 • n 件あれば、n 回ループする可能性があるので、計算量オーダーは O(n) • 例) “HHHH”
を探したい (上の要素から順に探す) 0 1 2 3 4 5 6 7 8 9 ・・・ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ
ん?平均回数でみると、O(0.5n)になるのでは? • 係数部分は省略するらしいです。 • なので 0.000001n だろうと 10000000n だろうと O(n)
と表現する らしい。
例3) ソート(バブルソート) • 二重ループになるので、計算量オーダーは O(n2) n = len(body) for x
in range(0, n) : for y in range(1, n) : if (body[y - 1] > body[y]) : body[y - 1], body[y] = body[y], body[y - 1] 二重ループ Python によるコード例
ループのネストが増えると? • 三重ループだと O(n3), 四重ループだと O(n4)・・・という感じになってい きます。
log が出てくるケースは? • O(log n) とか O(n log n) とか書かれているのは何?
例4) 二分岐探索 • 二分岐探索について考えてみます。 注) 二分岐探索(Binary Tree)は、データベースでよくつかわれている B 木とは 違います。
前提 • HHHH を探したい。(=探索キー) • ただし、探索対象はソート済みとする。 • 探索対象は以下。 AAAA BBBB
CCCC DDDD EEEE FFFF GGGG HHHH 探索対象
探索方法 • まず真ん中あたりを決めて、そのデータと探索キーの大小を比較する。 • 小さければ前半を、大きければ後半を探す。 • それを一致するまで繰り返し行う。 AAAA BBBB CCCC
DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH 探索1回目 探索2回目 探索3回目 探索4回目
木構造で見るとこんな感じ • こういう木構造に見えるので「二分木」と呼ばれる AAAA BBBB CCCC DDDD EEEE FFFF GGGG
HHHH より小さい より大きい より小さい より小さい より大きい より大きい より大きい
探索回数は? • たとえばデータが 8 の場合、4 回の検索でたどりついた。 • 16 の場合は 5
回 • 32 の場合は 6 回 • 65536の場合は? →たぶん 17 回 • 16777216の場合は? →たぶん 25回 • ということは、n = 2x のデータに対して x + 1 回でたどり着いている。 • n から x を求めたい場合 x = log 2 (n) となる。
さてデータベースの場合 • 探索にかかる時間は、 • フルスキャン → O(n) • インデックススキャン →O(log
n) みたいな感じです。
つまり、 • 100万件のデータがあった場合の最悪ケースの探索回数は以下 注) 実際のインデックスは二分木ではなく B 木だったり、ディスクに記録されている インデックスデータすべてをいきなりメモリ上に展開するわけでもなかったり、 ディスクからメモリに展開するためのディスク I/O
があったりその他云々いろい ろあるので、上記のような単純な話ではありません(汗 実行計画 探索方法 探索回数 テーブルフルスキャン 線形探索 100万回 インデックススキャン 木による探索 20回
圧倒的じゃないかインデックスは! • よし、じゃあインデックスを貼りまくれば万事解決!!
そんなわけない(汗 • 二分木探索のとき、必要だったのは「ソートされた」データでした。 • つまりインデックスにデータを追加するとき、インデックスのデータはソートさ れた状態を維持しなくてはならない。 • ソートされた状態を維持したままデータを追加するのはコストがかかる。 • したがってインデックスを作ると、検索
(select) のときは早いけど、データ の挿入(insert)や更新(update) のときに激重になる。
なので • インデックスを貼る場合は、検索頻度と更新頻度を考慮して、貼るカラムを選 定する必要があります。
こちらからは以上です • 探索とかソートする際は計算量を気にしましょう。