Upgrade to Pro — share decks privately, control downloads, hide ads and more …

計算量オーダーの話

 計算量オーダーの話

計算量オーダーについて説明してみました。

tsuda.a

May 25, 2024
Tweet

More Decks by tsuda.a

Other Decks in Programming

Transcript

  1. たとえばこんなイメージ n=10 n=100 n=10000 O(1) 1回 1回 1回 O(n) 10回

    100回 10000回 O(n2) 100回 10000回 1億回 O(log n) 4回 7回 14回 データの個数 計算回数 計算量 オーダー表記 O(n) O(n2) O(log n)
  2. 例2) 線形探索 • n 件あれば、n 回ループする可能性があるので、計算量オーダーは O(n) • 例) “HHHH”

    を探したい (上の要素から順に探す) 0 1 2 3 4 5 6 7 8 9 ・・・ AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH IIII JJJJ
  3. 例3) ソート(バブルソート) • 二重ループになるので、計算量オーダーは O(n2) n = len(body) for x

    in range(0, n) : for y in range(1, n) : if (body[y - 1] > body[y]) : body[y - 1], body[y] = body[y], body[y - 1] 二重ループ Python によるコード例
  4. 探索方法 • まず真ん中あたりを決めて、そのデータと探索キーの大小を比較する。 • 小さければ前半を、大きければ後半を探す。 • それを一致するまで繰り返し行う。 AAAA BBBB CCCC

    DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH AAAA BBBB CCCC DDDD EEEE FFFF GGGG HHHH 探索1回目 探索2回目 探索3回目 探索4回目
  5. 木構造で見るとこんな感じ • こういう木構造に見えるので「二分木」と呼ばれる AAAA BBBB CCCC DDDD EEEE FFFF GGGG

    HHHH より小さい より大きい より小さい より小さい より大きい より大きい より大きい
  6. 探索回数は? • たとえばデータが 8 の場合、4 回の検索でたどりついた。 • 16 の場合は 5

    回 • 32 の場合は 6 回 • 65536の場合は? →たぶん 17 回 • 16777216の場合は? →たぶん 25回 • ということは、n = 2x のデータに対して x + 1 回でたどり着いている。 • n から x を求めたい場合 x = log 2 (n) となる。
  7. つまり、 • 100万件のデータがあった場合の最悪ケースの探索回数は以下 注) 実際のインデックスは二分木ではなく B 木だったり、ディスクに記録されている インデックスデータすべてをいきなりメモリ上に展開するわけでもなかったり、 ディスクからメモリに展開するためのディスク I/O

    があったりその他云々いろい ろあるので、上記のような単純な話ではありません(汗 実行計画 探索方法 探索回数 テーブルフルスキャン 線形探索 100万回 インデックススキャン 木による探索 20回