Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Masked World Models for Visual Control
Search
tt1717
October 25, 2023
Research
0
55
[論文紹介] Masked World Models for Visual Control
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
October 25, 2023
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
16
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
15
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
70
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
59
[論文サーベイ] Survey on Pokemon AI
tt1717
0
94
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
110
[論文サーベイ] Survey on GPT for Games
tt1717
0
69
[論文サーベイ] Survey on World Models for Games
tt1717
0
180
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
70
Other Decks in Research
See All in Research
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
700
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
340
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
110
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
350
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
440
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
180
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.3k
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
The Invisible Side of Design
smashingmag
302
51k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
88
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
[SF Ruby Conf 2025] Rails X
palkan
0
560
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
From π to Pie charts
rasagy
0
91
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
90
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Color Theory Basics | Prateek | Gurzu
gurzu
0
150
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
210
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・報酬の予測によりタスクに適した表現を獲得 ・DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善 ・Meta-world,RLBench,DeepMind Control Suiteの環境で実験 ・特徴マスキング,マスキング比率,報酬予測に対してアブレー
ションスタディを実施 ・DreamerV2とMWMで予測画像を比較 ・MWM (Masked World Models) 1.畳み込み特徴マスキングと報酬予測によるAEの学習 2.AEから視覚表現を予測する潜在的ダイナミクスモデル学習を繰り 返し,「視覚表現」と「ダイナミクス」を別々に更新 3.「環境との相互作用から収集したサンプル」を用いて,AEと潜在 的なダイナミクスモデルを継続的に更新 ・世界モデルの画像表現学習に,「MAE」を使用 ・報酬の予測によりタスクに適した表現を獲得 Masked World Models for Visual Control (CoRL 2022) Younggyo Seo,Danijar Hafner,Hao Liu,Fangchen Liu,Stephen James,Kimin Lee,Pieter Abbeel https://arxiv.org/abs/2206.14244 2023/06/18 論文を表す画像 被引用数:19 1/10
背景:物体消失問題 ❏ 画像表現学習とタスクのギャップ ❏ 単純に再構成誤差でAEを学習し てもタスクに適した表現が得られ ない ❏ VAEのような再構成学習では面積 の小さい要素は無視してもLossが
下がる ❏ 一方で,タスクに必要なのは対象 物体の位置などの一部の情報 ❏ 学習コストの問題 ❏ 画像モデルと状態遷移モデルを同 時に学習すると,高次元データと なり計算量が増大 2/10 出典:https://arxiv.org/abs/2203.00494
Masked Autoencoder (MAE) ❏ パッチに分割された画像の75%を マスクしてViTに入力 ❏ 損失関数 ❏ マスクされたパッチの再構成誤差
(MSE) ❏ 画像分類タスクで高精度を達成 3/10 出典:https://arxiv.org/abs/2111.06377
Masked World Models (MWM) 4/10 ❏ 画像直接ではなく,中間層でマスキング(物体消失を防ぐ) ❏ パッチ内の細かいディテールを学習することが困難な場合がある ❏
再構成に加え報酬予測(報酬にかかわる情報を重視させる)
実験 5/10 ❏ Meta-world ❏ RLBench ❏ DeepMind Control Suite
結果 6/10 ❏ 性能・サンプル効率ともにDreamerV2から改善 ❏ Pick Placeタスクの小さな物体が重要なタスクでは差が顕著 ❏ Quadruped Walkタスクの小さな物体のないタスクでは同等程度
小さな物体を 扱うタスク 小さな物体を扱わ ないタスク
結果:Ablation Studies 7/10 画像直接ではなく特徴量 マスクで性能向上 75%のマスクで最高性能 報酬予測で性能向上 ❏ 特徴量マスク+マスク比率75%+報酬予測で最高性能
結果:予測画像比較 8/10 ❏ DreamerV2と比較してMWMは物体位置を予測できている 物体位置把 握 物体消失
まとめ 9/10 ❏ 世界モデルの画像表現学習にMAEを使用 ❏ 画像直接ではなく中間層でマスキング ❏ 報酬予測によりタスクに適した表現を獲得 ❏ DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善
参考文献 ❏ 松尾研究室スライド ❏ googleサイト 10/10