Lock in $30 Savings on PRO—Offer Ends Soon! ⏳

[論文紹介] Masked World Models for Visual Control

tt1717
October 25, 2023

[論文紹介] Masked World Models for Visual Control

PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.

tt1717

October 25, 2023
Tweet

More Decks by tt1717

Other Decks in Research

Transcript

  1. どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・報酬の予測によりタスクに適した表現を獲得 ・DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善 ・Meta-world,RLBench,DeepMind Control Suiteの環境で実験 ・特徴マスキング,マスキング比率,報酬予測に対してアブレー

    ションスタディを実施 ・DreamerV2とMWMで予測画像を比較 ・MWM (Masked World Models) 1.畳み込み特徴マスキングと報酬予測によるAEの学習 2.AEから視覚表現を予測する潜在的ダイナミクスモデル学習を繰り 返し,「視覚表現」と「ダイナミクス」を別々に更新 3.「環境との相互作用から収集したサンプル」を用いて,AEと潜在 的なダイナミクスモデルを継続的に更新 ・世界モデルの画像表現学習に,「MAE」を使用 ・報酬の予測によりタスクに適した表現を獲得 Masked World Models for Visual Control (CoRL 2022) Younggyo Seo,Danijar Hafner,Hao Liu,Fangchen Liu,Stephen James,Kimin Lee,Pieter Abbeel https://arxiv.org/abs/2206.14244 2023/06/18 論文を表す画像 被引用数:19 1/10
  2. 背景:物体消失問題 ❏ 画像表現学習とタスクのギャップ ❏ 単純に再構成誤差でAEを学習し てもタスクに適した表現が得られ ない ❏ VAEのような再構成学習では面積 の小さい要素は無視してもLossが

    下がる ❏ 一方で,タスクに必要なのは対象 物体の位置などの一部の情報 ❏ 学習コストの問題 ❏ 画像モデルと状態遷移モデルを同 時に学習すると,高次元データと なり計算量が増大 2/10 出典:https://arxiv.org/abs/2203.00494