Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Masked World Models for Visual Control
Search
tt1717
October 25, 2023
Research
0
55
[論文紹介] Masked World Models for Visual Control
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
October 25, 2023
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
13
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
12
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
68
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
57
[論文サーベイ] Survey on Pokemon AI
tt1717
0
92
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
110
[論文サーベイ] Survey on GPT for Games
tt1717
0
68
[論文サーベイ] Survey on World Models for Games
tt1717
0
180
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
70
Other Decks in Research
See All in Research
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
710
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
190
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
210
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
440
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1k
POI: Proof of Identity
katsyoshi
0
120
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
180
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
150
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
180
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
100
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
340
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
Featured
See All Featured
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
35k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Accessibility Awareness
sabderemane
0
13
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Navigating Weather and Climate Data
rabernat
0
43
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Optimizing for Happiness
mojombo
379
70k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
32
How to Think Like a Performance Engineer
csswizardry
28
2.4k
YesSQL, Process and Tooling at Scale
rocio
174
15k
sira's awesome portfolio website redesign presentation
elsirapls
0
86
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・報酬の予測によりタスクに適した表現を獲得 ・DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善 ・Meta-world,RLBench,DeepMind Control Suiteの環境で実験 ・特徴マスキング,マスキング比率,報酬予測に対してアブレー
ションスタディを実施 ・DreamerV2とMWMで予測画像を比較 ・MWM (Masked World Models) 1.畳み込み特徴マスキングと報酬予測によるAEの学習 2.AEから視覚表現を予測する潜在的ダイナミクスモデル学習を繰り 返し,「視覚表現」と「ダイナミクス」を別々に更新 3.「環境との相互作用から収集したサンプル」を用いて,AEと潜在 的なダイナミクスモデルを継続的に更新 ・世界モデルの画像表現学習に,「MAE」を使用 ・報酬の予測によりタスクに適した表現を獲得 Masked World Models for Visual Control (CoRL 2022) Younggyo Seo,Danijar Hafner,Hao Liu,Fangchen Liu,Stephen James,Kimin Lee,Pieter Abbeel https://arxiv.org/abs/2206.14244 2023/06/18 論文を表す画像 被引用数:19 1/10
背景:物体消失問題 ❏ 画像表現学習とタスクのギャップ ❏ 単純に再構成誤差でAEを学習し てもタスクに適した表現が得られ ない ❏ VAEのような再構成学習では面積 の小さい要素は無視してもLossが
下がる ❏ 一方で,タスクに必要なのは対象 物体の位置などの一部の情報 ❏ 学習コストの問題 ❏ 画像モデルと状態遷移モデルを同 時に学習すると,高次元データと なり計算量が増大 2/10 出典:https://arxiv.org/abs/2203.00494
Masked Autoencoder (MAE) ❏ パッチに分割された画像の75%を マスクしてViTに入力 ❏ 損失関数 ❏ マスクされたパッチの再構成誤差
(MSE) ❏ 画像分類タスクで高精度を達成 3/10 出典:https://arxiv.org/abs/2111.06377
Masked World Models (MWM) 4/10 ❏ 画像直接ではなく,中間層でマスキング(物体消失を防ぐ) ❏ パッチ内の細かいディテールを学習することが困難な場合がある ❏
再構成に加え報酬予測(報酬にかかわる情報を重視させる)
実験 5/10 ❏ Meta-world ❏ RLBench ❏ DeepMind Control Suite
結果 6/10 ❏ 性能・サンプル効率ともにDreamerV2から改善 ❏ Pick Placeタスクの小さな物体が重要なタスクでは差が顕著 ❏ Quadruped Walkタスクの小さな物体のないタスクでは同等程度
小さな物体を 扱うタスク 小さな物体を扱わ ないタスク
結果:Ablation Studies 7/10 画像直接ではなく特徴量 マスクで性能向上 75%のマスクで最高性能 報酬予測で性能向上 ❏ 特徴量マスク+マスク比率75%+報酬予測で最高性能
結果:予測画像比較 8/10 ❏ DreamerV2と比較してMWMは物体位置を予測できている 物体位置把 握 物体消失
まとめ 9/10 ❏ 世界モデルの画像表現学習にMAEを使用 ❏ 画像直接ではなく中間層でマスキング ❏ 報酬予測によりタスクに適した表現を獲得 ❏ DreamerV2と比較して小さな物体を扱うタスクで大幅に性能改善
参考文献 ❏ 松尾研究室スライド ❏ googleサイト 10/10