Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【AWS パートナーミートアップ in 大阪】「SageMaker Canvas」で「Bedr...
Search
Toshiki Terai
December 19, 2023
Technology
0
490
【AWS パートナーミートアップ in 大阪】「SageMaker Canvas」で「Bedrock」の基盤モデルをファインチューニングして俳句のウマさを競わせてみた_DENET寺井_20231219
「SageMaker Canvas」から「Bedrock」の基盤モデルをファインチューニングして、俳句のウマさを比較検証して競わせてみたお話
Toshiki Terai
December 19, 2023
Tweet
Share
More Decks by Toshiki Terai
See All by Toshiki Terai
[【関西開催】AWS Community Builders Meetup 2025]効率厨大歓喜「EventBridge」について語る
ttelltte
2
42
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
230
【四国クラウドお遍路 2024 in 高知】AWSのIoTサービスを駆使して異常検出デモを作ったお話_DENET寺井_20240907
ttelltte
1
340
(ほとんど)ServerlessサービスだけでIoT異常検出デモを作ってAWS Summitで展示した話
ttelltte
0
110
【JAWS-UG 大阪 × Amplify Japan User Group】祝☆Amplify ホスティング 大阪リージョン - 『AWS Cloud Quest』という神ゲーについて_DENET寺井_20240613
ttelltte
0
110
【緊急開催!サーバーレス座談会 in JAWS-UG 大阪】Lambdaの「プロビジョニング済み同時実行」を試す_DENET寺井_20230924
ttelltte
0
66
【四国クラウドお遍路2023】パタパタプロジェクト-AWSを活用して手軽に画像分析を実装した_20230916
ttelltte
1
470
AWS駆け出しエンジニアがノーコードに触れてみた #JAWS-UG 四国クラウドお遍路(2022-1112)
ttelltte
1
400
Other Decks in Technology
See All in Technology
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
3
960
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
320
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
7.4k
Devin(Deep) Wiki/Searchの活用で変わる開発の世界観/devin-wiki-search-impact
tomoki10
0
340
Rubyで作る論理回路シミュレータの設計の話 - Kashiwa.rb #12
kozy4324
1
310
産業機械をElixirで制御する
kikuyuta
0
170
Tenstorrent 開発者プログラム
tenstorrent_japan
0
310
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
410
「規約、知識、オペレーション」から考える中規模以上の開発組織のCursorルールの 考え方・育て方 / Cursor Rules for Coding Styles, Domain Knowledges and Operations
yuitosato
6
1.8k
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
290
Snowflake Intelligenceで実現できるノーコードAI活用
takumimukaiyama
1
250
Featured
See All Featured
Building Adaptive Systems
keathley
43
2.6k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Designing for Performance
lara
609
69k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
Code Review Best Practice
trishagee
68
18k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Music & Morning Musume
bryan
46
6.6k
Transcript
~生成系AI の流行りに乗って~ 2023-12-19 AWS パートナーミートアップ in 大 阪 株式会社ディーネット 寺井
俊喜(テライ トシキ) 1 「SageMaker Canvas」で「Bedrock」の基盤モデルを ファインチューニングして俳句のウマさを競わせてみた
自己紹介 2 • 名前 - 寺井 俊喜(テライ トシキ) • 所属
- 株式会社ディーネット(2022/12~) - クラウドビジネス部 アーキテクト課 • 好きなこと - 音楽、猫、お酒、ゲーム、効率化 • 好きなAWSサービス - Amazon EventBridge • SNS/ブログ - Twitter(@TeraiToshiki) - DENET技術ブログ(t.terai) follow me !!
目次 3
目次 4 1.「SageMaker Canvas」について 2.実際に使ってみた 3.ファインチューニングする 4.結果 5.まとめ
そもそも 「Amazon SageMaker」とは? 5
Amazon SageMaker について 参考: https://aws.amazon.com/jp/sagemaker/ 6 • フルマネージドな機械学習サービス • 機械学習モデルを簡単に構築、トレーニング、デプロイ
Amazon SageMaker について 参考: https://aws.amazon.com/jp/sagemaker/ 7 ① ② ③ ✕
④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ✕
Amazon SageMaker について 8
「Amazon SageMaker Canvas」とは 9
Amazon SageMaker Canvas について 参考: https://aws.amazon.com/jp/sagemaker/canvas/ 10 • ノーコードで機械学習モデルが作れるサービス •
直感的操作で機械学習モデルの 作成や予測を実現するノーコードツール
「Amazon SageMaker Canvas」 実際に使ってみた(サクサクいきます。) 11
SageMaker Canvas やってみた – クイックセットアップ 12
SageMaker Canvas やってみた – クイックセットアップ 13
SageMaker Canvas やってみた – Canvas起動 14
SageMaker Canvas やってみた – Canvas起動 15
SageMaker Canvas やってみた – Bedrockモデル有効化 16
SageMaker Canvas やってみた – モデルの使用 17
SageMaker Canvas やってみた – モデルの使用 18
SageMaker Canvas やってみた – モデルを複数比較 19
SageMaker Canvas やってみた – 俳句作ってもらう 20
SageMaker Canvas やってみた – 俳句作ってもらう 21
SageMaker Canvas やってみた – 俳句作ってもらう 22
SageMaker Canvas やってみた – 俳句作ってもらう 23
SageMaker Canvas やってみた – Jurassic-2 Ultraについて 24
SageMaker Canvas やってみた – 俳句作ってもらう 25
「Amazon SageMaker Canvas」基盤モデルの ファインチューニングやってみた 26
ファインチューニング(Fine-tuning)について 引用: https://enterprisezine.jp/article/detail/18011 27 • 「Fine-tuning」 を直訳 → 「微調整」 •
基盤となるモデルを特定のタスクやデータに合わせて 性能を 「微調整」して最適化 するプロセス
SageMaker Canvas で Fine-tuning やってみた – Fine-tune model 作成 28
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 29
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 30
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 31
SageMaker Canvas で Fine-tuning やってみた – Fine-tune 設定 32
SageMaker Canvas で Fine-tuning やってみた – Fine-tune の実行権限 33
SageMaker Canvas で Fine-tuning やってみた – Fine-tune の実行権限 34
SageMaker Canvas で Fine-tuning やってみた – カスタムモデルの起動 35
SageMaker Canvas で Fine-tuning やってみた – カスタムモデルの起動 36
SageMaker Canvas で Fine-tuning やってみた – Provisioned Throughput 料金 37
SageMaker Canvas で Fine-tuning やってみた – ファインチューニング後のモデル使用 38
SageMaker Canvas で Fine-tuning やってみた – 俳句作ってもらう 39
まとめ 40
まとめ 41 ➢ 直感的に操作できて簡単 • GUIの扱いやすさ • インフラを意識しなくていい • MLの知識がなくてもできた
(とはいえもう少し知ってた方がイイ…) ➢ 料金には注意 • SageMaker Canvas: • ワークスペースインスタンス (セッション-時間) の料金:1.9 USD/時間 • Bedrock: • 1 時間あたり 1 モデルユニットの推定価格:20.50USD/時間 ※分単位ではなく時間単位
株式会社ディーネット 寺井 俊喜(テライ トシキ) AWSアドバンスト コンサルティングパートナー 42 ご清聴ありがとうございました。