Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【AWS パートナーミートアップ in 大阪】「SageMaker Canvas」で「Bedr...
Search
Toshiki Terai
December 19, 2023
Technology
0
440
【AWS パートナーミートアップ in 大阪】「SageMaker Canvas」で「Bedrock」の基盤モデルをファインチューニングして俳句のウマさを競わせてみた_DENET寺井_20231219
「SageMaker Canvas」から「Bedrock」の基盤モデルをファインチューニングして、俳句のウマさを比較検証して競わせてみたお話
Toshiki Terai
December 19, 2023
Tweet
Share
More Decks by Toshiki Terai
See All by Toshiki Terai
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
190
【四国クラウドお遍路 2024 in 高知】AWSのIoTサービスを駆使して異常検出デモを作ったお話_DENET寺井_20240907
ttelltte
1
300
(ほとんど)ServerlessサービスだけでIoT異常検出デモを作ってAWS Summitで展示した話
ttelltte
0
87
【JAWS-UG 大阪 × Amplify Japan User Group】祝☆Amplify ホスティング 大阪リージョン - 『AWS Cloud Quest』という神ゲーについて_DENET寺井_20240613
ttelltte
0
80
【緊急開催!サーバーレス座談会 in JAWS-UG 大阪】Lambdaの「プロビジョニング済み同時実行」を試す_DENET寺井_20230924
ttelltte
0
49
【四国クラウドお遍路2023】パタパタプロジェクト-AWSを活用して手軽に画像分析を実装した_20230916
ttelltte
1
410
AWS駆け出しエンジニアがノーコードに触れてみた #JAWS-UG 四国クラウドお遍路(2022-1112)
ttelltte
1
350
Other Decks in Technology
See All in Technology
君も受託系GISエンジニアにならないか
sudataka
2
370
Developers Summit 2025 浅野卓也(13-B-7 LegalOn Technologies)
legalontechnologies
PRO
0
150
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.2k
Building Products in the LLM Era
ymatsuwitter
10
4.4k
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
110
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
480
PL900試験から学ぶ Power Platform 基礎知識講座
kumikeyy
0
110
FastConnect の冗長性
ocise
1
9.6k
第13回 Data-Centric AI勉強会, 画像認識におけるData-centric AI
ksaito_osx
0
360
自動テストの世界に、この5年間で起きたこと
autifyhq
10
7.1k
プロセス改善による品質向上事例
tomasagi
1
1.6k
事業継続を支える自動テストの考え方
tsuemura
0
300
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
4 Signs Your Business is Dying
shpigford
182
22k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
The World Runs on Bad Software
bkeepers
PRO
67
11k
How to Ace a Technical Interview
jacobian
276
23k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Building Your Own Lightsaber
phodgson
104
6.2k
Code Reviewing Like a Champion
maltzj
521
39k
Transcript
~生成系AI の流行りに乗って~ 2023-12-19 AWS パートナーミートアップ in 大 阪 株式会社ディーネット 寺井
俊喜(テライ トシキ) 1 「SageMaker Canvas」で「Bedrock」の基盤モデルを ファインチューニングして俳句のウマさを競わせてみた
自己紹介 2 • 名前 - 寺井 俊喜(テライ トシキ) • 所属
- 株式会社ディーネット(2022/12~) - クラウドビジネス部 アーキテクト課 • 好きなこと - 音楽、猫、お酒、ゲーム、効率化 • 好きなAWSサービス - Amazon EventBridge • SNS/ブログ - Twitter(@TeraiToshiki) - DENET技術ブログ(t.terai) follow me !!
目次 3
目次 4 1.「SageMaker Canvas」について 2.実際に使ってみた 3.ファインチューニングする 4.結果 5.まとめ
そもそも 「Amazon SageMaker」とは? 5
Amazon SageMaker について 参考: https://aws.amazon.com/jp/sagemaker/ 6 • フルマネージドな機械学習サービス • 機械学習モデルを簡単に構築、トレーニング、デプロイ
Amazon SageMaker について 参考: https://aws.amazon.com/jp/sagemaker/ 7 ① ② ③ ✕
④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ✕
Amazon SageMaker について 8
「Amazon SageMaker Canvas」とは 9
Amazon SageMaker Canvas について 参考: https://aws.amazon.com/jp/sagemaker/canvas/ 10 • ノーコードで機械学習モデルが作れるサービス •
直感的操作で機械学習モデルの 作成や予測を実現するノーコードツール
「Amazon SageMaker Canvas」 実際に使ってみた(サクサクいきます。) 11
SageMaker Canvas やってみた – クイックセットアップ 12
SageMaker Canvas やってみた – クイックセットアップ 13
SageMaker Canvas やってみた – Canvas起動 14
SageMaker Canvas やってみた – Canvas起動 15
SageMaker Canvas やってみた – Bedrockモデル有効化 16
SageMaker Canvas やってみた – モデルの使用 17
SageMaker Canvas やってみた – モデルの使用 18
SageMaker Canvas やってみた – モデルを複数比較 19
SageMaker Canvas やってみた – 俳句作ってもらう 20
SageMaker Canvas やってみた – 俳句作ってもらう 21
SageMaker Canvas やってみた – 俳句作ってもらう 22
SageMaker Canvas やってみた – 俳句作ってもらう 23
SageMaker Canvas やってみた – Jurassic-2 Ultraについて 24
SageMaker Canvas やってみた – 俳句作ってもらう 25
「Amazon SageMaker Canvas」基盤モデルの ファインチューニングやってみた 26
ファインチューニング(Fine-tuning)について 引用: https://enterprisezine.jp/article/detail/18011 27 • 「Fine-tuning」 を直訳 → 「微調整」 •
基盤となるモデルを特定のタスクやデータに合わせて 性能を 「微調整」して最適化 するプロセス
SageMaker Canvas で Fine-tuning やってみた – Fine-tune model 作成 28
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 29
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 30
SageMaker Canvas で Fine-tuning やってみた – データセットの作成 31
SageMaker Canvas で Fine-tuning やってみた – Fine-tune 設定 32
SageMaker Canvas で Fine-tuning やってみた – Fine-tune の実行権限 33
SageMaker Canvas で Fine-tuning やってみた – Fine-tune の実行権限 34
SageMaker Canvas で Fine-tuning やってみた – カスタムモデルの起動 35
SageMaker Canvas で Fine-tuning やってみた – カスタムモデルの起動 36
SageMaker Canvas で Fine-tuning やってみた – Provisioned Throughput 料金 37
SageMaker Canvas で Fine-tuning やってみた – ファインチューニング後のモデル使用 38
SageMaker Canvas で Fine-tuning やってみた – 俳句作ってもらう 39
まとめ 40
まとめ 41 ➢ 直感的に操作できて簡単 • GUIの扱いやすさ • インフラを意識しなくていい • MLの知識がなくてもできた
(とはいえもう少し知ってた方がイイ…) ➢ 料金には注意 • SageMaker Canvas: • ワークスペースインスタンス (セッション-時間) の料金:1.9 USD/時間 • Bedrock: • 1 時間あたり 1 モデルユニットの推定価格:20.50USD/時間 ※分単位ではなく時間単位
株式会社ディーネット 寺井 俊喜(テライ トシキ) AWSアドバンスト コンサルティングパートナー 42 ご清聴ありがとうございました。