Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
Search
ttnyt8701
March 12, 2025
Programming
2
64
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
【AWS活用 AI/ML/LLM #6】機械学習/大規模言語モデル モデリング
https://blueish.connpass.com/event/348098/
ttnyt8701
March 12, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Gemini CLI のはじめ方
ttnyt8701
1
75
ObsidianをMCP連携させてみる
ttnyt8701
2
200
Claude Codeの使い方
ttnyt8701
1
160
FastMCPでMCPサーバー/クライアントを構築してみる
ttnyt8701
2
150
LangChain Open Deep Researchとは?
ttnyt8701
2
110
Vertex AI Agent Builderとは?
ttnyt8701
3
130
A2A(Agent2Agent )とは?
ttnyt8701
1
310
Amazon Bedrock LLM as a Judgeを試す
ttnyt8701
1
32
Amazon SageMaker Lakehouseでデータのサイロ化による課題を解決する
ttnyt8701
1
33
Other Decks in Programming
See All in Programming
AI時代の『改訂新版 良いコード/悪いコードで学ぶ設計入門』 / ai-good-code-bad-code
minodriven
21
8.7k
GPUを計算資源として使おう!
primenumber
1
190
iOS 26にアップデートすると実機でのHot Reloadができない?
umigishiaoi
0
130
The Modern View Layer Rails Deserves: A Vision For 2025 And Beyond @ RailsConf 2025, Philadelphia, PA
marcoroth
2
640
フロントエンドのパフォーマンスチューニング
koukimiura
4
1.5k
レベル1の開発生産性向上に取り組む − 日々の作業の効率化・自動化を通じた改善活動
kesoji
0
260
AIプログラマーDevinは PHPerの夢を見るか?
shinyasaita
1
230
Agentic Coding: The Future of Software Development with Agents
mitsuhiko
0
120
Quand Symfony, ApiPlatform, OpenAI et LangChain s'allient pour exploiter vos PDF : de la théorie à la production…
ahmedbhs123
0
210
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
230
型で語るカタ
irof
0
350
RailsGirls IZUMO スポンサーLT
16bitidol
0
190
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
6
320
Become a Pro
speakerdeck
PRO
29
5.4k
The Pragmatic Product Professional
lauravandoore
35
6.7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Documentation Writing (for coders)
carmenintech
72
4.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Visualization
eitanlees
146
16k
Scaling GitHub
holman
460
140k
Transcript
Amazon Sagemaker Jump Startを用いて爆速でモデル を作成してみる🚀 2025.03.13 ©BLUEISH 2025. All rights
reserved.
立野 祐太 Yuta Tateno WEB開発(Go、GCP) 画像認識やRAGを用いた開発 WEBエンジニア 自己紹介 ©BLUEISH 2024.
All rights reserved.
ゴール Amazon Sagemaker Jump Startを用いたモデル作成方法を共有し、簡単に爆速でモ デルが作れるイメージを掴んでもらうこと
Amazon Sagemaker Jump Start とは? 機械学習のスターターキット 主な機能 ❏ 事前学習済みモデルの利用 :
すぐに使える AI モデルが多数用意 ❏ 簡単なカスタマイズ : ファインチューニング可能 ❏ 簡単なデプロイ : ボタン数クリックか SDK で本番環境に展開ができる ❏ モデル比較 : 品質や責任に関する指標でモデルを比較・選択ができる ❏ 組織内共有 : チーム内でモデルやノートブックを共有ができる
人物画像を入力することで年齢推定できるモデルを作成する さっそくやってみましょう! 🚀
Sagemaker Studioにアクセス
Jump Start 学習済みのモデルを利用できる
モデル選定 用途: 画像認識を用いた年齢推定
モデル選定
モデル選定 EfficientNet-B3を選択
モデル選定
モデルの検証 デプロイをし、素のモデル出力を確認する
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : jersey モデルの予測 (上位5):
jersey, window shade, Band Aid, sunscreen, bulletproof vest 👉ファインチューニングを行い年齢推定 モデルにしていく
1. 人物画像と年齢のデータセットを収集 2. データセットをラベリング(前処理) 3. ファインチューニングを行う 4. デプロイ 5. モデルを検証
ファインチューニングの流れ
https://susanqq.github.io/UTKFace/ 人物の画像と年齢のデータセットを収集 UTKFaceで1~110歳までの学習データを約1万 枚 データセットの準備
データセットの前処理 ラベリング方法についてモデルページを確認 ディレクトリ名: 正解ラベル、ディレクトリの中: 学習用データとなるようにする
データセットのアップロード S3に前処理したデータセットをアップロード
ファインチューニング
ファインチューニング 1. S3にアップロードしたデータセット の選択 2. ハイパーパラメータの設定など行 う(今回はデフォルト)
ファインチューニング 1万枚のデータに対して約10分で完了(インスタンス:ml.p3.2xlarge) デプロイをしてモデルを検証
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : 14 モデルの予測 (上位5):
14,52,26,27,29 正解はしなかったが、年齢推定モデルを 開発することができた 🚀
モデルの検証 正解はしなかったが、年齢推定モデルを開発することができた 🚀 アジア人のデータセットの学習量を増やす、より適切・高精度なモデル・アルゴリズムを 選択することで精度向上を望めそう!
まとめ 🔰 非エンジニアでもモデルを簡単に作成することが可能 🧠 適切なモデル選定、適切なデータセットがあれば精度向上可能 🚀 学習時間約10分、トータルでも約数十分で爆速開発可能だった (データセットのアップロード時間除く)