Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
Search
ttnyt8701
March 12, 2025
Programming
3
95
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
【AWS活用 AI/ML/LLM #6】機械学習/大規模言語モデル モデリング
https://blueish.connpass.com/event/348098/
ttnyt8701
March 12, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Gemini CLI のはじめ方
ttnyt8701
1
250
ObsidianをMCP連携させてみる
ttnyt8701
3
4.3k
Claude Codeの使い方
ttnyt8701
2
370
FastMCPでMCPサーバー/クライアントを構築してみる
ttnyt8701
3
670
LangChain Open Deep Researchとは?
ttnyt8701
2
390
Vertex AI Agent Builderとは?
ttnyt8701
4
370
A2A(Agent2Agent )とは?
ttnyt8701
2
460
Amazon Bedrock LLM as a Judgeを試す
ttnyt8701
2
140
Amazon SageMaker Lakehouseでデータのサイロ化による課題を解決する
ttnyt8701
2
58
Other Decks in Programming
See All in Programming
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
250
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.5k
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
630
Oxlint JS plugins
kazupon
1
1k
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
740
CSC307 Lecture 08
javiergs
PRO
0
670
CSC307 Lecture 06
javiergs
PRO
0
690
CSC307 Lecture 03
javiergs
PRO
1
490
dchart: charts from deck markup
ajstarks
3
1k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Building Adaptive Systems
keathley
44
2.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
How STYLIGHT went responsive
nonsquared
100
6k
Code Review Best Practice
trishagee
74
20k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Navigating Weather and Climate Data
rabernat
0
110
How to build a perfect <img>
jonoalderson
1
4.9k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Transcript
Amazon Sagemaker Jump Startを用いて爆速でモデル を作成してみる🚀 2025.03.13 ©BLUEISH 2025. All rights
reserved.
立野 祐太 Yuta Tateno WEB開発(Go、GCP) 画像認識やRAGを用いた開発 WEBエンジニア 自己紹介 ©BLUEISH 2024.
All rights reserved.
ゴール Amazon Sagemaker Jump Startを用いたモデル作成方法を共有し、簡単に爆速でモ デルが作れるイメージを掴んでもらうこと
Amazon Sagemaker Jump Start とは? 機械学習のスターターキット 主な機能 ❏ 事前学習済みモデルの利用 :
すぐに使える AI モデルが多数用意 ❏ 簡単なカスタマイズ : ファインチューニング可能 ❏ 簡単なデプロイ : ボタン数クリックか SDK で本番環境に展開ができる ❏ モデル比較 : 品質や責任に関する指標でモデルを比較・選択ができる ❏ 組織内共有 : チーム内でモデルやノートブックを共有ができる
人物画像を入力することで年齢推定できるモデルを作成する さっそくやってみましょう! 🚀
Sagemaker Studioにアクセス
Jump Start 学習済みのモデルを利用できる
モデル選定 用途: 画像認識を用いた年齢推定
モデル選定
モデル選定 EfficientNet-B3を選択
モデル選定
モデルの検証 デプロイをし、素のモデル出力を確認する
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : jersey モデルの予測 (上位5):
jersey, window shade, Band Aid, sunscreen, bulletproof vest 👉ファインチューニングを行い年齢推定 モデルにしていく
1. 人物画像と年齢のデータセットを収集 2. データセットをラベリング(前処理) 3. ファインチューニングを行う 4. デプロイ 5. モデルを検証
ファインチューニングの流れ
https://susanqq.github.io/UTKFace/ 人物の画像と年齢のデータセットを収集 UTKFaceで1~110歳までの学習データを約1万 枚 データセットの準備
データセットの前処理 ラベリング方法についてモデルページを確認 ディレクトリ名: 正解ラベル、ディレクトリの中: 学習用データとなるようにする
データセットのアップロード S3に前処理したデータセットをアップロード
ファインチューニング
ファインチューニング 1. S3にアップロードしたデータセット の選択 2. ハイパーパラメータの設定など行 う(今回はデフォルト)
ファインチューニング 1万枚のデータに対して約10分で完了(インスタンス:ml.p3.2xlarge) デプロイをしてモデルを検証
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : 14 モデルの予測 (上位5):
14,52,26,27,29 正解はしなかったが、年齢推定モデルを 開発することができた 🚀
モデルの検証 正解はしなかったが、年齢推定モデルを開発することができた 🚀 アジア人のデータセットの学習量を増やす、より適切・高精度なモデル・アルゴリズムを 選択することで精度向上を望めそう!
まとめ 🔰 非エンジニアでもモデルを簡単に作成することが可能 🧠 適切なモデル選定、適切なデータセットがあれば精度向上可能 🚀 学習時間約10分、トータルでも約数十分で爆速開発可能だった (データセットのアップロード時間除く)