Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
Search
ttnyt8701
March 12, 2025
Programming
2
40
Amazon Sagemaker Jump Startを用いて爆速でモデルを作成してみる
【AWS活用 AI/ML/LLM #6】機械学習/大規模言語モデル モデリング
https://blueish.connpass.com/event/348098/
ttnyt8701
March 12, 2025
Tweet
Share
More Decks by ttnyt8701
See All by ttnyt8701
Amazon SageMaker Lakehouseでデータのサイロ化による課題を解決する
ttnyt8701
1
26
Langsmith入門 トレーシングとプロンプト管理を試す
ttnyt8701
1
63
Amazon Bedrock Custom model importを試してみる
ttnyt8701
2
76
Prompt Cachingは本当に効果的なのか検証してみた.pdf
ttnyt8701
1
640
Other Decks in Programming
See All in Programming
신입 안드로이드 개발자의 AI 스타트업 생존기 (+ Native C++ Code를 Android에서 사용해보기)
dygames
0
430
Google Cloudとo11yで実現するアプリケーション開発者主体のDB改善
nnaka2992
1
200
PEPCは何を変えようとしていたのか
ken7253
3
340
kintone開発を効率化するためにチームで試した施策とその結果を大放出!
oguemon
1
440
JavaOne 2025: Advancing Java Profiling
jbachorik
1
120
Node.js, Deno, Bun 最新動向とその所感について
yosuke_furukawa
PRO
5
2.7k
Compose Navigation実装の見通しを良くする
hiroaki404
0
110
CQRS+ES勉強会#1
rechellatek
0
200
Expoによるアプリ開発の現在地とReact Server Componentsが切り開く未来
yukukotani
2
360
CloudRun, Spanner に対する負荷試験の反省と オブザーバビリティによるアプローチ
oyasumipants
1
250
気がついたら子供が社会人になって 自分と同じモバイルアプリエンジニアになった件 / Parent-Child Engineers
koishi
0
210
AI Agentを利用したAndroid開発について
yuchan2215
0
170
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
What's in a price? How to price your products and services
michaelherold
244
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
GitHub's CSS Performance
jonrohan
1030
460k
Music & Morning Musume
bryan
46
6.4k
Statistics for Hackers
jakevdp
797
220k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
680
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Transcript
Amazon Sagemaker Jump Startを用いて爆速でモデル を作成してみる🚀 2025.03.13 ©BLUEISH 2025. All rights
reserved.
立野 祐太 Yuta Tateno WEB開発(Go、GCP) 画像認識やRAGを用いた開発 WEBエンジニア 自己紹介 ©BLUEISH 2024.
All rights reserved.
ゴール Amazon Sagemaker Jump Startを用いたモデル作成方法を共有し、簡単に爆速でモ デルが作れるイメージを掴んでもらうこと
Amazon Sagemaker Jump Start とは? 機械学習のスターターキット 主な機能 ❏ 事前学習済みモデルの利用 :
すぐに使える AI モデルが多数用意 ❏ 簡単なカスタマイズ : ファインチューニング可能 ❏ 簡単なデプロイ : ボタン数クリックか SDK で本番環境に展開ができる ❏ モデル比較 : 品質や責任に関する指標でモデルを比較・選択ができる ❏ 組織内共有 : チーム内でモデルやノートブックを共有ができる
人物画像を入力することで年齢推定できるモデルを作成する さっそくやってみましょう! 🚀
Sagemaker Studioにアクセス
Jump Start 学習済みのモデルを利用できる
モデル選定 用途: 画像認識を用いた年齢推定
モデル選定
モデル選定 EfficientNet-B3を選択
モデル選定
モデルの検証 デプロイをし、素のモデル出力を確認する
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : jersey モデルの予測 (上位5):
jersey, window shade, Band Aid, sunscreen, bulletproof vest 👉ファインチューニングを行い年齢推定 モデルにしていく
1. 人物画像と年齢のデータセットを収集 2. データセットをラベリング(前処理) 3. ファインチューニングを行う 4. デプロイ 5. モデルを検証
ファインチューニングの流れ
https://susanqq.github.io/UTKFace/ 人物の画像と年齢のデータセットを収集 UTKFaceで1~110歳までの学習データを約1万 枚 データセットの準備
データセットの前処理 ラベリング方法についてモデルページを確認 ディレクトリ名: 正解ラベル、ディレクトリの中: 学習用データとなるようにする
データセットのアップロード S3に前処理したデータセットをアップロード
ファインチューニング
ファインチューニング 1. S3にアップロードしたデータセット の選択 2. ハイパーパラメータの設定など行 う(今回はデフォルト)
ファインチューニング 1万枚のデータに対して約10分で完了(インスタンス:ml.p3.2xlarge) デプロイをしてモデルを検証
モデルの検証 顔画像を入力し、モデル出力を確認 期待値 : 24 モデルの予測 : 14 モデルの予測 (上位5):
14,52,26,27,29 正解はしなかったが、年齢推定モデルを 開発することができた 🚀
モデルの検証 正解はしなかったが、年齢推定モデルを開発することができた 🚀 アジア人のデータセットの学習量を増やす、より適切・高精度なモデル・アルゴリズムを 選択することで精度向上を望めそう!
まとめ 🔰 非エンジニアでもモデルを簡単に作成することが可能 🧠 適切なモデル選定、適切なデータセットがあれば精度向上可能 🚀 学習時間約10分、トータルでも約数十分で爆速開発可能だった (データセットのアップロード時間除く)