Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed prioritized experience replay
Search
umeco
July 03, 2018
Research
0
470
Distributed prioritized experience replay
Research paper readings in my laboratory
umeco
July 03, 2018
Tweet
Share
More Decks by umeco
See All by umeco
LLMでの多言語対応どうする問題
umeco
0
37
大生成AI時代の新規事業戦略を考える
umeco
0
120
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
umeco
0
550
Cookpad_R&D_internship_2018_byumeco
umeco
0
430
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
610
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
590
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
480
Other Decks in Research
See All in Research
書き手はどこを訪れたか? - 言語モデルで訪問行動を読み取る -
hiroki13
0
150
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.9k
Whoisの闇
hirachan
3
310
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
250
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
3
170
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
230
アプリケーションから知るモデルマージ
maguro27
0
270
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
310
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
580
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
200
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
570
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
The Invisible Side of Design
smashingmag
299
50k
Designing for humans not robots
tammielis
250
25k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
How to Ace a Technical Interview
jacobian
276
23k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
270
Fireside Chat
paigeccino
35
3.2k
RailsConf 2023
tenderlove
29
1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
1.9k
Transcript
%JTUSJCVUFEQSJPSJUJ[FE FYQFSJFODFSFQMBZ കຊ Horgan, Dan, et al. "Distributed
prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ڧԽֶशͱ Ϟσϧ͕ࣗͰ༷ʑʹߦಈ͠ɼྑ͍ใु͕ಘΒΕΔ ߦಈΛֶश͍ͯ͘͠ख๏ ࣮༻ྫ "MQIB(P ғޟͷଧͪํΛֶश
ڧԽֶशͷཁૉ Policy <ྫ> ಛఆͷғޟͷ൫໘Ͱ࠷উͭͱࢥ͏खΛଧͭ উͭ PSෛ͚Δ
উͯΔͳΒ͜ͷखΛ͍ɼෛ͚ΔͳΒΘͳ͍ Λ܁Γฦ͢͜ͱͰɼͲͷ൫໘ͰͲͷखΛଧͯ উ͍͔ͪ͢Λֶश͍ͯ͘͠ ߦಈ ݁Ռ ใुؔͷߋ৽
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ݚڀഎܠ ڧྗͳܭࢉࢿݯΛޮՌతʹར༻ͨ͠Ϟσϧ͕಄ n (PSJMB n "$ n (16"EWBOUBHF"DUPS$SJUJD
ݱঢ়ଟ͘ͷϞσϧ୯ҰͷϚγϯΛఆ ݱࡏͷڧԽֶशख๏ ଟͷϚγϯΛ༻͍ͨϞσϧͷඞཁੑ
ݚڀత ڧԽֶशख๏"QF9ͷఏҊ n ࢄγεςϜʴ༏ઌॱҐ͖ܦݧ࠶ੜ n ࠷৽ͷΞϧΰϦζϜͷΈ߹Θͤ n ࣮ӡ༻্ʹ͓͚Δࡉ͔͍मਖ਼ ఏҊख๏ͷύϥϝʔλͷֶशͷޮՌͷੳ n
ܦݧΛੜ͢ΔXPSLFSͷ n ܦݧͷอ࣋
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ؔ࿈ݚڀ ਂֶशͷޯΛฒྻʹܭࢉ͢Δख๏ ಉظɼඇಉظͰͷߋ৽ํ๏͕ఏҊ /BJSΒ͜ΕΒΛڧԽֶशʹద༻ n ޯͷࢄඇಉظߋ৽ n ࢄܦݧੜ ࢄ֬ޯ߱Լ๏
!$ !#""%& !#"! !!#!!% ! !#!% $& ୯ҰϚγϯɼϚϧνεϨουͰߴ͍݁Ռ
ؔ࿈ݚڀ ֶशͷ্ͨΊʹΑ͘ΘΕ͍ͯΔख๏ n ༏ઌΛ༻͍ͨαϯϓϦϯάภΓ͕ൃੜ n ֬ͳαϯϓϧͰͷޯมԽΛେ͖͘͢Δ "MBJOΒڭࢣ͋ΓֶशʹԠ༻ ࢄγεςϜͷԠ༻ʹޭ ࢄԽॏཁαϯϓϦϯά
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance reduction in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.
ؔ࿈ݚڀ ੜͨ͠ܦݧΛอଘ͠Կֶशʹ༻͢Δख๏ n ੜͨ͠ܦݧΛޮతʹ༻Ͱ͖Δ n ݹ͍ํࡦͷܦݧΛ͢͜ͱͰաద߹Λ͛Δ 1SJPSJUJ[FE&YQFSJFODF3FQMBZ n ༗༻ͳܦݧΛΑΓଟ͘࠶ੜ͢Δख๏ n
5%ޡࠩΛ༻͍ͯ༏ઌ͚ &YQFSJFODF3FQMBZ -$%%('"$' %!$&)*(.$'"* ,$. " ',++ ('* $'!(* & ',% *'$'")%''$'"', #$'"#$' *'$'" (&#-%(#'-'(''$+ ',('("%(-'.$$%. **$(*$,$1 /) *$ ' * )%0 '', *',$('% ('! * ' (' *'$'" )* + ',,$('+
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ఏҊख๏ "QF9ͷ֓ཁ Learner Network Replay Experiences Actor Network Environment
ڧԽֶशΛͭͷׂׂ
ఏҊख๏ n ֤ࣗͷߦಈՁOFUXPSLͱFOWJSPONFOUΛॴ࣋ n ํࡦʹج͖ͮߦಈ͠ɼঢ়ଶભҠΛ؍ଌ n ભҠʹ༏ઌΛ༩͠ɼ3FQMBZ.FNPSZʹૹ৴ n "DUPSߦಈՁOFUXPSLΛֶश͠ͳ͍
"DUPS େྔͷ"DUPS͕ಠཱʹߦಈ͠ɼܦݧΛେྔʹੜ
ఏҊख๏ "DUPS͔Βૹ৴͞ΕͨܦݧΛอ࣋ n શମͰͭͷ3FQMBZ.FNPSZΛ࣋ͭ n อ࣋Ͱ͖Δܦݧͷ্ݶΛઃఆ n ্ݶΛ͑ͨ߹'*'0Ͱআ 3FQMBZ.FNPSZ
-FBSOFSֶ͕श͢ΔܦݧΛେྔʹอ࣋
ఏҊख๏ n ܦݧΛ༏ઌॱҐʹج͖ͮαϯϓϦϯάɼֶश n ֶशʹ༻͍ͨܦݧ༏ઌΛ࠶ܭࢉ n ҰఆִؒͰ"DUPSύϥϝʔλΛૹ৴ -FBSOFS ༗༻ͳܦݧΛ༏ઌతʹֶश
ఏҊख๏ "QF9ͷ֓ཁͷ·ͱΊ Learner Network Replay Experiences Actor Network Environment
ฒྻʹܦݧΛେྔʹੜ େྔͷܦݧΛอ࣋ ใुΛ૿͢Α͏ʹֶश
ఏҊख๏ (16Λେྔʹཁٻ͠ͳ͍ n -FBSOFS(16ΛੵΜͩϚγϯ্Ͱಈ࡞ ͭ n "DUPS$16ͷΈͷϚγϯ্Ͱಈ࡞ େྔ ܦݧͷޮతͳར༻ n
3FQMBZNFNPSZશମͰڞ༗ n ܦݧʹ༏ઌΛ༩ ఏҊख๏ͷಛ ͭͷ"DUPSʹΑΔ༗༻ͳൃݟ͕શମͰڞ༗
ఏҊख๏ n ֶशΞϧΰϦζϜ n 2ؔͷۙࣅث n σʔλͷαϯϓϦϯά -FBSOFSͷϞσϧ %PVCMF%FFQ2/FUXPSL
NVMUJTUFQCPPUTUSBQUBSHFU %VFMJOH/FUXPSL 1SJPSJUJ[FE&YQFSJFODF3FQMBZ
ఏҊख๏ n "DUPSݸผʹઃఆ͞Εͨ! − greedy๏ʹै͏ l ֬!ͰϥϯμϜʹߦಈ͢Δख๏ l ϥϯμϜʹߦಈ͢Δ͜ͱͰաద߹Λ͛Δ l
"DUPSຖʹઃఆ͢Δ͜ͱͰଟ༷ੑΛ୲อ n ༏ઌॱҐʹج͖ͮαϯϓϦϯά͢ΔͨΊɼ ॏཁαϯϓϦϯάʹΑͬͯͷภΓΛमਖ਼ ͦͷଞͷࡉ͔͍ઃఆ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ධՁ࣮ݧ n ࣮ݧ"UBSJͷήʔϜ FHϒϩοΫ่͠ n "DUPSɿ "DUPSʹ$16 n "DUPSͷੜܦݧɿ'14 n
શମੜܦݧɿ ,'14 3FQFBU n ޯͷߋ৽ɿճTFD n ܦݧ༰ྔݮͷͨΊ1/(Ͱѹॖ͠อଘ ࣮ݧઃఆ
ධՁ࣮ݧ ֶशऴྃ࣌ͷੑೳൺֱ ֶश࣌ؒ είΞ n ήʔϜͷείΞͷதԝ n ਓؒͷείΞ n
࠷ऴείΞɼֶश࣌ؒڞʹ طଘख๏͔Βେ͖͘վળ
ධՁ࣮ݧ ใुͷ࣌ؒมԽ ֶश࣌ؒ ใु n ͭͷήʔϜʹ͓͚Δ ֫ಘใुͷฏۉ n ଞͷख๏ͱൺֱ͠ɼ
֫ಘใुΛΑΓૣ͘ େ͖͍ͯ͘͠Δ
ධՁ࣮ݧ ࣮ݧ݁Ռ - )1( ) ) ) 3) -
1 0 0-2 0 %) - -. %) (2 . % 50 - 0 ) -4 % 50 % 50 - 0 n "QF9͕࠷ߴ͍είΞΛه n ࢄֶशʹΑֶͬͯश࣌ؒେ෯ʹॖ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ੳ "DUPSͱใुͷؔ "DUPS͕ଟ͍΄ͲɼΑΓྑ͍ใुΛ֫ಘ
ੳ 3FQMBZ.FNPSZͱใुͷؔ ༰ྔ͕ଟ͍΄Ͳɼൺֱతྑ͍ใुΛ֫ಘ
ੳ ΑΓ࠷৽ͷܦݧͷֶशείΞʹد༩͢Δ͔ʁ ࠷৽ͷܦݧɼ࠷৽ͷύϥϝʔλʹجͮ͘ "DUPS͕ૹ৴͢ΔܦݧΛෳͯ͠ଟΊʹૹ৴ ΑΓ৽͍͠ܦݧ͕ଟΊʹαϯϓϦϯά͞ΕΔ ࠷৽ͷܦݧ
ੳ ࠷৽ͷܦݧͱใुͷؔ ! ࠷৽ͷܦݧͷֶशͱ ใु݁ͼ͍͍ͭͯͳ͍
ੳ n "DUPSΛ૿͢ͱใु͕૿Ճ l ہॴղؕΔ͜ͱΛ͛Δಇ͖ l େྔͷ୳ࡧͰɼ༗༻ͳܦݧΛ֫ಘ n 3FQMBZ.FNPSZΛ૿͢͜ͱͰใु͕૿Ճ n
࠷৽ͷܦݧͱใुʹతͳد༩ͳ͍ ੳ݁Ռ·ͱΊ ༗༻ͳܦݧΛΑΓ͘อ࣋Ͱ͖ͨ ܦݧͷਫ૿͠ଟ༷ੑΛ͘͠ɼ ύϑΥʔϚϯεΛԼ͛Δ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
·ͱΊͱߟ n ࢄʴ༏ઌ͖ܦݧ࠶ੜͷ'SBNFXPSLΛఏҊ n "QF9ֶ࣮࣌ؒशɼ࠷ऴੑೳʹ͓͍ͯ࠷ྑ ͍ੑೳΛࣔͨ͠ n աద߹ڧԽֶशʹ͓͚Δେ͖ͳͰɼࠓճσʔ λΛେྔʹੜ͢Δ୯७ͳํ๏͕ޮՌతͰ͋Δ͜ͱΛ ࣔͨ͠
n কདྷతʹσʔλΛޮΑ͘͏ํ๏Λࡧ͢Δ͖ ·ͱΊ
·ͱΊͱߟ "QF9ܦݧΛߴʹେྔʹूΊΔख๏ ෳࡶͳλεΫͰঢ়ଶ!"͕େྔʹଘࡏ େྔͷܦݧͷੜ͕ঢ়ଶ!"Λ͘Χόʔֶ͠श͕ਐΜͩ ݱঢ়ɼϥϯμϜ୳ࡧʹΑͬͯະͷߦಈΛܦݧ ൃੜසͷ͍ঢ়ଶ!"Λॏతʹ୳ࡧ͢Δख๏ ߟ
2MFBSOJOHͷ2ؔͷߋ৽ࣜ ! "# , %# ← ! "# , %#
+ α(*#+, + - max 12∈4 52 ! "#+, , 67 − ! "# , %# ) "# : ࣌ࠁ;ͷঢ়ଶ %# :࣌ࠁ;ͷߦಈ ! "# , %# ঢ়ଶ"#Ͱߦಈ%#Λͱͬͨ߹ͷਪఆใु *#ɿ࣌ࠁ;ʹ͓͚Δใु αɿֶश -ɿׂҾ 5%ޡࠩʢ5FNQPSBMMZ%JGGFSFODFʣ 5%ޡࠩ ਪఆใुͱ࣮ࡍͷใुͷࠩ