Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed prioritized experience replay
Search
umeco
July 03, 2018
Research
0
500
Distributed prioritized experience replay
Research paper readings in my laboratory
umeco
July 03, 2018
Tweet
Share
More Decks by umeco
See All by umeco
Clineプロンプト徹底解剖
umeco
0
580
LLMでの多言語対応どうする問題
umeco
0
180
大生成AI時代の新規事業戦略を考える
umeco
0
140
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
umeco
0
580
Cookpad_R&D_internship_2018_byumeco
umeco
0
450
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
650
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
610
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
500
Other Decks in Research
See All in Research
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
540
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
210
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
5
1.4k
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
300
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
2025/7/5 応用音響研究会招待講演@北海道大学
takuma_okamoto
1
190
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
120
数理最適化に基づく制御
mickey_kubo
6
730
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
1k
A scalable, annual aboveground biomass product for monitoring carbon impacts of ecosystem restoration projects
satai
4
240
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
Building Adaptive Systems
keathley
43
2.7k
Unsuck your backbone
ammeep
671
58k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Embracing the Ebb and Flow
colly
87
4.8k
KATA
mclloyd
32
14k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Statistics for Hackers
jakevdp
799
220k
Transcript
%JTUSJCVUFEQSJPSJUJ[FE FYQFSJFODFSFQMBZ കຊ Horgan, Dan, et al. "Distributed
prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ڧԽֶशͱ Ϟσϧ͕ࣗͰ༷ʑʹߦಈ͠ɼྑ͍ใु͕ಘΒΕΔ ߦಈΛֶश͍ͯ͘͠ख๏ ࣮༻ྫ "MQIB(P ғޟͷଧͪํΛֶश
ڧԽֶशͷཁૉ Policy <ྫ> ಛఆͷғޟͷ൫໘Ͱ࠷উͭͱࢥ͏खΛଧͭ উͭ PSෛ͚Δ
উͯΔͳΒ͜ͷखΛ͍ɼෛ͚ΔͳΒΘͳ͍ Λ܁Γฦ͢͜ͱͰɼͲͷ൫໘ͰͲͷखΛଧͯ উ͍͔ͪ͢Λֶश͍ͯ͘͠ ߦಈ ݁Ռ ใुؔͷߋ৽
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ݚڀഎܠ ڧྗͳܭࢉࢿݯΛޮՌతʹར༻ͨ͠Ϟσϧ͕಄ n (PSJMB n "$ n (16"EWBOUBHF"DUPS$SJUJD
ݱঢ়ଟ͘ͷϞσϧ୯ҰͷϚγϯΛఆ ݱࡏͷڧԽֶशख๏ ଟͷϚγϯΛ༻͍ͨϞσϧͷඞཁੑ
ݚڀత ڧԽֶशख๏"QF9ͷఏҊ n ࢄγεςϜʴ༏ઌॱҐ͖ܦݧ࠶ੜ n ࠷৽ͷΞϧΰϦζϜͷΈ߹Θͤ n ࣮ӡ༻্ʹ͓͚Δࡉ͔͍मਖ਼ ఏҊख๏ͷύϥϝʔλͷֶशͷޮՌͷੳ n
ܦݧΛੜ͢ΔXPSLFSͷ n ܦݧͷอ࣋
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ؔ࿈ݚڀ ਂֶशͷޯΛฒྻʹܭࢉ͢Δख๏ ಉظɼඇಉظͰͷߋ৽ํ๏͕ఏҊ /BJSΒ͜ΕΒΛڧԽֶशʹద༻ n ޯͷࢄඇಉظߋ৽ n ࢄܦݧੜ ࢄ֬ޯ߱Լ๏
!$ !#""%& !#"! !!#!!% ! !#!% $& ୯ҰϚγϯɼϚϧνεϨουͰߴ͍݁Ռ
ؔ࿈ݚڀ ֶशͷ্ͨΊʹΑ͘ΘΕ͍ͯΔख๏ n ༏ઌΛ༻͍ͨαϯϓϦϯάภΓ͕ൃੜ n ֬ͳαϯϓϧͰͷޯมԽΛେ͖͘͢Δ "MBJOΒڭࢣ͋ΓֶशʹԠ༻ ࢄγεςϜͷԠ༻ʹޭ ࢄԽॏཁαϯϓϦϯά
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance reduction in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.
ؔ࿈ݚڀ ੜͨ͠ܦݧΛอଘ͠Կֶशʹ༻͢Δख๏ n ੜͨ͠ܦݧΛޮతʹ༻Ͱ͖Δ n ݹ͍ํࡦͷܦݧΛ͢͜ͱͰաద߹Λ͛Δ 1SJPSJUJ[FE&YQFSJFODF3FQMBZ n ༗༻ͳܦݧΛΑΓଟ͘࠶ੜ͢Δख๏ n
5%ޡࠩΛ༻͍ͯ༏ઌ͚ &YQFSJFODF3FQMBZ -$%%('"$' %!$&)*(.$'"* ,$. " ',++ ('* $'!(* & ',% *'$'")%''$'"', #$'"#$' *'$'" (&#-%(#'-'(''$+ ',('("%(-'.$$%. **$(*$,$1 /) *$ ' * )%0 '', *',$('% ('! * ' (' *'$'" )* + ',,$('+
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ఏҊख๏ "QF9ͷ֓ཁ Learner Network Replay Experiences Actor Network Environment
ڧԽֶशΛͭͷׂׂ
ఏҊख๏ n ֤ࣗͷߦಈՁOFUXPSLͱFOWJSPONFOUΛॴ࣋ n ํࡦʹج͖ͮߦಈ͠ɼঢ়ଶભҠΛ؍ଌ n ભҠʹ༏ઌΛ༩͠ɼ3FQMBZ.FNPSZʹૹ৴ n "DUPSߦಈՁOFUXPSLΛֶश͠ͳ͍
"DUPS େྔͷ"DUPS͕ಠཱʹߦಈ͠ɼܦݧΛେྔʹੜ
ఏҊख๏ "DUPS͔Βૹ৴͞ΕͨܦݧΛอ࣋ n શମͰͭͷ3FQMBZ.FNPSZΛ࣋ͭ n อ࣋Ͱ͖Δܦݧͷ্ݶΛઃఆ n ্ݶΛ͑ͨ߹'*'0Ͱআ 3FQMBZ.FNPSZ
-FBSOFSֶ͕श͢ΔܦݧΛେྔʹอ࣋
ఏҊख๏ n ܦݧΛ༏ઌॱҐʹج͖ͮαϯϓϦϯάɼֶश n ֶशʹ༻͍ͨܦݧ༏ઌΛ࠶ܭࢉ n ҰఆִؒͰ"DUPSύϥϝʔλΛૹ৴ -FBSOFS ༗༻ͳܦݧΛ༏ઌతʹֶश
ఏҊख๏ "QF9ͷ֓ཁͷ·ͱΊ Learner Network Replay Experiences Actor Network Environment
ฒྻʹܦݧΛେྔʹੜ େྔͷܦݧΛอ࣋ ใुΛ૿͢Α͏ʹֶश
ఏҊख๏ (16Λେྔʹཁٻ͠ͳ͍ n -FBSOFS(16ΛੵΜͩϚγϯ্Ͱಈ࡞ ͭ n "DUPS$16ͷΈͷϚγϯ্Ͱಈ࡞ େྔ ܦݧͷޮతͳར༻ n
3FQMBZNFNPSZશମͰڞ༗ n ܦݧʹ༏ઌΛ༩ ఏҊख๏ͷಛ ͭͷ"DUPSʹΑΔ༗༻ͳൃݟ͕શମͰڞ༗
ఏҊख๏ n ֶशΞϧΰϦζϜ n 2ؔͷۙࣅث n σʔλͷαϯϓϦϯά -FBSOFSͷϞσϧ %PVCMF%FFQ2/FUXPSL
NVMUJTUFQCPPUTUSBQUBSHFU %VFMJOH/FUXPSL 1SJPSJUJ[FE&YQFSJFODF3FQMBZ
ఏҊख๏ n "DUPSݸผʹઃఆ͞Εͨ! − greedy๏ʹै͏ l ֬!ͰϥϯμϜʹߦಈ͢Δख๏ l ϥϯμϜʹߦಈ͢Δ͜ͱͰաద߹Λ͛Δ l
"DUPSຖʹઃఆ͢Δ͜ͱͰଟ༷ੑΛ୲อ n ༏ઌॱҐʹج͖ͮαϯϓϦϯά͢ΔͨΊɼ ॏཁαϯϓϦϯάʹΑͬͯͷภΓΛमਖ਼ ͦͷଞͷࡉ͔͍ઃఆ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ධՁ࣮ݧ n ࣮ݧ"UBSJͷήʔϜ FHϒϩοΫ่͠ n "DUPSɿ "DUPSʹ$16 n "DUPSͷੜܦݧɿ'14 n
શମੜܦݧɿ ,'14 3FQFBU n ޯͷߋ৽ɿճTFD n ܦݧ༰ྔݮͷͨΊ1/(Ͱѹॖ͠อଘ ࣮ݧઃఆ
ධՁ࣮ݧ ֶशऴྃ࣌ͷੑೳൺֱ ֶश࣌ؒ είΞ n ήʔϜͷείΞͷதԝ n ਓؒͷείΞ n
࠷ऴείΞɼֶश࣌ؒڞʹ طଘख๏͔Βେ͖͘վળ
ධՁ࣮ݧ ใुͷ࣌ؒมԽ ֶश࣌ؒ ใु n ͭͷήʔϜʹ͓͚Δ ֫ಘใुͷฏۉ n ଞͷख๏ͱൺֱ͠ɼ
֫ಘใुΛΑΓૣ͘ େ͖͍ͯ͘͠Δ
ධՁ࣮ݧ ࣮ݧ݁Ռ - )1( ) ) ) 3) -
1 0 0-2 0 %) - -. %) (2 . % 50 - 0 ) -4 % 50 % 50 - 0 n "QF9͕࠷ߴ͍είΞΛه n ࢄֶशʹΑֶͬͯश࣌ؒେ෯ʹॖ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ੳ "DUPSͱใुͷؔ "DUPS͕ଟ͍΄ͲɼΑΓྑ͍ใुΛ֫ಘ
ੳ 3FQMBZ.FNPSZͱใुͷؔ ༰ྔ͕ଟ͍΄Ͳɼൺֱతྑ͍ใुΛ֫ಘ
ੳ ΑΓ࠷৽ͷܦݧͷֶशείΞʹد༩͢Δ͔ʁ ࠷৽ͷܦݧɼ࠷৽ͷύϥϝʔλʹجͮ͘ "DUPS͕ૹ৴͢ΔܦݧΛෳͯ͠ଟΊʹૹ৴ ΑΓ৽͍͠ܦݧ͕ଟΊʹαϯϓϦϯά͞ΕΔ ࠷৽ͷܦݧ
ੳ ࠷৽ͷܦݧͱใुͷؔ ! ࠷৽ͷܦݧͷֶशͱ ใु݁ͼ͍͍ͭͯͳ͍
ੳ n "DUPSΛ૿͢ͱใु͕૿Ճ l ہॴղؕΔ͜ͱΛ͛Δಇ͖ l େྔͷ୳ࡧͰɼ༗༻ͳܦݧΛ֫ಘ n 3FQMBZ.FNPSZΛ૿͢͜ͱͰใु͕૿Ճ n
࠷৽ͷܦݧͱใुʹతͳد༩ͳ͍ ੳ݁Ռ·ͱΊ ༗༻ͳܦݧΛΑΓ͘อ࣋Ͱ͖ͨ ܦݧͷਫ૿͠ଟ༷ੑΛ͘͠ɼ ύϑΥʔϚϯεΛԼ͛Δ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
·ͱΊͱߟ n ࢄʴ༏ઌ͖ܦݧ࠶ੜͷ'SBNFXPSLΛఏҊ n "QF9ֶ࣮࣌ؒशɼ࠷ऴੑೳʹ͓͍ͯ࠷ྑ ͍ੑೳΛࣔͨ͠ n աద߹ڧԽֶशʹ͓͚Δେ͖ͳͰɼࠓճσʔ λΛେྔʹੜ͢Δ୯७ͳํ๏͕ޮՌతͰ͋Δ͜ͱΛ ࣔͨ͠
n কདྷతʹσʔλΛޮΑ͘͏ํ๏Λࡧ͢Δ͖ ·ͱΊ
·ͱΊͱߟ "QF9ܦݧΛߴʹେྔʹूΊΔख๏ ෳࡶͳλεΫͰঢ়ଶ!"͕େྔʹଘࡏ େྔͷܦݧͷੜ͕ঢ়ଶ!"Λ͘Χόʔֶ͠श͕ਐΜͩ ݱঢ়ɼϥϯμϜ୳ࡧʹΑͬͯະͷߦಈΛܦݧ ൃੜසͷ͍ঢ়ଶ!"Λॏతʹ୳ࡧ͢Δख๏ ߟ
2MFBSOJOHͷ2ؔͷߋ৽ࣜ ! "# , %# ← ! "# , %#
+ α(*#+, + - max 12∈4 52 ! "#+, , 67 − ! "# , %# ) "# : ࣌ࠁ;ͷঢ়ଶ %# :࣌ࠁ;ͷߦಈ ! "# , %# ঢ়ଶ"#Ͱߦಈ%#Λͱͬͨ߹ͷਪఆใु *#ɿ࣌ࠁ;ʹ͓͚Δใु αɿֶश -ɿׂҾ 5%ޡࠩʢ5FNQPSBMMZ%JGGFSFODFʣ 5%ޡࠩ ਪఆใुͱ࣮ࡍͷใुͷࠩ