Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed prioritized experience replay
Search
umeco
July 03, 2018
Research
0
510
Distributed prioritized experience replay
Research paper readings in my laboratory
umeco
July 03, 2018
Tweet
Share
More Decks by umeco
See All by umeco
Clineプロンプト徹底解剖
umeco
0
650
LLMでの多言語対応どうする問題
umeco
0
200
大生成AI時代の新規事業戦略を考える
umeco
0
140
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
umeco
0
580
Cookpad_R&D_internship_2018_byumeco
umeco
0
460
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
650
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
620
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
510
Other Decks in Research
See All in Research
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.1k
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
34k
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
120
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4.2k
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
POI: Proof of Identity
katsyoshi
0
110
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
430
論文紹介:Not All Tokens Are What You Need for Pretraining
kosuken
1
210
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
240
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
580
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
A better future with KSS
kneath
239
18k
The Cult of Friendly URLs
andyhume
79
6.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Producing Creativity
orderedlist
PRO
348
40k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Embracing the Ebb and Flow
colly
88
4.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Building an army of robots
kneath
306
46k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
%JTUSJCVUFEQSJPSJUJ[FE FYQFSJFODFSFQMBZ കຊ Horgan, Dan, et al. "Distributed
prioritized experience replay." arXiv preprint arXiv:1803.00933 (2018).
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ڧԽֶशͱ Ϟσϧ͕ࣗͰ༷ʑʹߦಈ͠ɼྑ͍ใु͕ಘΒΕΔ ߦಈΛֶश͍ͯ͘͠ख๏ ࣮༻ྫ "MQIB(P ғޟͷଧͪํΛֶश
ڧԽֶशͷཁૉ Policy <ྫ> ಛఆͷғޟͷ൫໘Ͱ࠷উͭͱࢥ͏खΛଧͭ উͭ PSෛ͚Δ
উͯΔͳΒ͜ͷखΛ͍ɼෛ͚ΔͳΒΘͳ͍ Λ܁Γฦ͢͜ͱͰɼͲͷ൫໘ͰͲͷखΛଧͯ উ͍͔ͪ͢Λֶश͍ͯ͘͠ ߦಈ ݁Ռ ใुؔͷߋ৽
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ݚڀഎܠ ڧྗͳܭࢉࢿݯΛޮՌతʹར༻ͨ͠Ϟσϧ͕಄ n (PSJMB n "$ n (16"EWBOUBHF"DUPS$SJUJD
ݱঢ়ଟ͘ͷϞσϧ୯ҰͷϚγϯΛఆ ݱࡏͷڧԽֶशख๏ ଟͷϚγϯΛ༻͍ͨϞσϧͷඞཁੑ
ݚڀత ڧԽֶशख๏"QF9ͷఏҊ n ࢄγεςϜʴ༏ઌॱҐ͖ܦݧ࠶ੜ n ࠷৽ͷΞϧΰϦζϜͷΈ߹Θͤ n ࣮ӡ༻্ʹ͓͚Δࡉ͔͍मਖ਼ ఏҊख๏ͷύϥϝʔλͷֶशͷޮՌͷੳ n
ܦݧΛੜ͢ΔXPSLFSͷ n ܦݧͷอ࣋
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ؔ࿈ݚڀ ਂֶशͷޯΛฒྻʹܭࢉ͢Δख๏ ಉظɼඇಉظͰͷߋ৽ํ๏͕ఏҊ /BJSΒ͜ΕΒΛڧԽֶशʹద༻ n ޯͷࢄඇಉظߋ৽ n ࢄܦݧੜ ࢄ֬ޯ߱Լ๏
!$ !#""%& !#"! !!#!!% ! !#!% $& ୯ҰϚγϯɼϚϧνεϨουͰߴ͍݁Ռ
ؔ࿈ݚڀ ֶशͷ্ͨΊʹΑ͘ΘΕ͍ͯΔख๏ n ༏ઌΛ༻͍ͨαϯϓϦϯάภΓ͕ൃੜ n ֬ͳαϯϓϧͰͷޯมԽΛେ͖͘͢Δ "MBJOΒڭࢣ͋ΓֶशʹԠ༻ ࢄγεςϜͷԠ༻ʹޭ ࢄԽॏཁαϯϓϦϯά
Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance reduction in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.
ؔ࿈ݚڀ ੜͨ͠ܦݧΛอଘ͠Կֶशʹ༻͢Δख๏ n ੜͨ͠ܦݧΛޮతʹ༻Ͱ͖Δ n ݹ͍ํࡦͷܦݧΛ͢͜ͱͰաద߹Λ͛Δ 1SJPSJUJ[FE&YQFSJFODF3FQMBZ n ༗༻ͳܦݧΛΑΓଟ͘࠶ੜ͢Δख๏ n
5%ޡࠩΛ༻͍ͯ༏ઌ͚ &YQFSJFODF3FQMBZ -$%%('"$' %!$&)*(.$'"* ,$. " ',++ ('* $'!(* & ',% *'$'")%''$'"', #$'"#$' *'$'" (&#-%(#'-'(''$+ ',('("%(-'.$$%. **$(*$,$1 /) *$ ' * )%0 '', *',$('% ('! * ' (' *'$'" )* + ',,$('+
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ఏҊख๏ "QF9ͷ֓ཁ Learner Network Replay Experiences Actor Network Environment
ڧԽֶशΛͭͷׂׂ
ఏҊख๏ n ֤ࣗͷߦಈՁOFUXPSLͱFOWJSPONFOUΛॴ࣋ n ํࡦʹج͖ͮߦಈ͠ɼঢ়ଶભҠΛ؍ଌ n ભҠʹ༏ઌΛ༩͠ɼ3FQMBZ.FNPSZʹૹ৴ n "DUPSߦಈՁOFUXPSLΛֶश͠ͳ͍
"DUPS େྔͷ"DUPS͕ಠཱʹߦಈ͠ɼܦݧΛେྔʹੜ
ఏҊख๏ "DUPS͔Βૹ৴͞ΕͨܦݧΛอ࣋ n શମͰͭͷ3FQMBZ.FNPSZΛ࣋ͭ n อ࣋Ͱ͖Δܦݧͷ্ݶΛઃఆ n ্ݶΛ͑ͨ߹'*'0Ͱআ 3FQMBZ.FNPSZ
-FBSOFSֶ͕श͢ΔܦݧΛେྔʹอ࣋
ఏҊख๏ n ܦݧΛ༏ઌॱҐʹج͖ͮαϯϓϦϯάɼֶश n ֶशʹ༻͍ͨܦݧ༏ઌΛ࠶ܭࢉ n ҰఆִؒͰ"DUPSύϥϝʔλΛૹ৴ -FBSOFS ༗༻ͳܦݧΛ༏ઌతʹֶश
ఏҊख๏ "QF9ͷ֓ཁͷ·ͱΊ Learner Network Replay Experiences Actor Network Environment
ฒྻʹܦݧΛେྔʹੜ େྔͷܦݧΛอ࣋ ใुΛ૿͢Α͏ʹֶश
ఏҊख๏ (16Λେྔʹཁٻ͠ͳ͍ n -FBSOFS(16ΛੵΜͩϚγϯ্Ͱಈ࡞ ͭ n "DUPS$16ͷΈͷϚγϯ্Ͱಈ࡞ େྔ ܦݧͷޮతͳར༻ n
3FQMBZNFNPSZશମͰڞ༗ n ܦݧʹ༏ઌΛ༩ ఏҊख๏ͷಛ ͭͷ"DUPSʹΑΔ༗༻ͳൃݟ͕શମͰڞ༗
ఏҊख๏ n ֶशΞϧΰϦζϜ n 2ؔͷۙࣅث n σʔλͷαϯϓϦϯά -FBSOFSͷϞσϧ %PVCMF%FFQ2/FUXPSL
NVMUJTUFQCPPUTUSBQUBSHFU %VFMJOH/FUXPSL 1SJPSJUJ[FE&YQFSJFODF3FQMBZ
ఏҊख๏ n "DUPSݸผʹઃఆ͞Εͨ! − greedy๏ʹै͏ l ֬!ͰϥϯμϜʹߦಈ͢Δख๏ l ϥϯμϜʹߦಈ͢Δ͜ͱͰաద߹Λ͛Δ l
"DUPSຖʹઃఆ͢Δ͜ͱͰଟ༷ੑΛ୲อ n ༏ઌॱҐʹج͖ͮαϯϓϦϯά͢ΔͨΊɼ ॏཁαϯϓϦϯάʹΑͬͯͷภΓΛमਖ਼ ͦͷଞͷࡉ͔͍ઃఆ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ධՁ࣮ݧ n ࣮ݧ"UBSJͷήʔϜ FHϒϩοΫ่͠ n "DUPSɿ "DUPSʹ$16 n "DUPSͷੜܦݧɿ'14 n
શମੜܦݧɿ ,'14 3FQFBU n ޯͷߋ৽ɿճTFD n ܦݧ༰ྔݮͷͨΊ1/(Ͱѹॖ͠อଘ ࣮ݧઃఆ
ධՁ࣮ݧ ֶशऴྃ࣌ͷੑೳൺֱ ֶश࣌ؒ είΞ n ήʔϜͷείΞͷதԝ n ਓؒͷείΞ n
࠷ऴείΞɼֶश࣌ؒڞʹ طଘख๏͔Βେ͖͘վળ
ධՁ࣮ݧ ใुͷ࣌ؒมԽ ֶश࣌ؒ ใु n ͭͷήʔϜʹ͓͚Δ ֫ಘใुͷฏۉ n ଞͷख๏ͱൺֱ͠ɼ
֫ಘใुΛΑΓૣ͘ େ͖͍ͯ͘͠Δ
ධՁ࣮ݧ ࣮ݧ݁Ռ - )1( ) ) ) 3) -
1 0 0-2 0 %) - -. %) (2 . % 50 - 0 ) -4 % 50 % 50 - 0 n "QF9͕࠷ߴ͍είΞΛه n ࢄֶशʹΑֶͬͯश࣌ؒେ෯ʹॖ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
ੳ "DUPSͱใुͷؔ "DUPS͕ଟ͍΄ͲɼΑΓྑ͍ใुΛ֫ಘ
ੳ 3FQMBZ.FNPSZͱใुͷؔ ༰ྔ͕ଟ͍΄Ͳɼൺֱతྑ͍ใुΛ֫ಘ
ੳ ΑΓ࠷৽ͷܦݧͷֶशείΞʹد༩͢Δ͔ʁ ࠷৽ͷܦݧɼ࠷৽ͷύϥϝʔλʹجͮ͘ "DUPS͕ૹ৴͢ΔܦݧΛෳͯ͠ଟΊʹૹ৴ ΑΓ৽͍͠ܦݧ͕ଟΊʹαϯϓϦϯά͞ΕΔ ࠷৽ͷܦݧ
ੳ ࠷৽ͷܦݧͱใुͷؔ ! ࠷৽ͷܦݧͷֶशͱ ใु݁ͼ͍͍ͭͯͳ͍
ੳ n "DUPSΛ૿͢ͱใु͕૿Ճ l ہॴղؕΔ͜ͱΛ͛Δಇ͖ l େྔͷ୳ࡧͰɼ༗༻ͳܦݧΛ֫ಘ n 3FQMBZ.FNPSZΛ૿͢͜ͱͰใु͕૿Ճ n
࠷৽ͷܦݧͱใुʹతͳد༩ͳ͍ ੳ݁Ռ·ͱΊ ༗༻ͳܦݧΛΑΓ͘อ࣋Ͱ͖ͨ ܦݧͷਫ૿͠ଟ༷ੑΛ͘͠ɼ ύϑΥʔϚϯεΛԼ͛Δ
࣍ ڧԽֶश ݚڀഎܠɼݚڀత ؔ࿈ݚڀ ఏҊख๏
ධՁ࣮ݧ ੳ ·ͱΊͱߟ
·ͱΊͱߟ n ࢄʴ༏ઌ͖ܦݧ࠶ੜͷ'SBNFXPSLΛఏҊ n "QF9ֶ࣮࣌ؒशɼ࠷ऴੑೳʹ͓͍ͯ࠷ྑ ͍ੑೳΛࣔͨ͠ n աద߹ڧԽֶशʹ͓͚Δେ͖ͳͰɼࠓճσʔ λΛେྔʹੜ͢Δ୯७ͳํ๏͕ޮՌతͰ͋Δ͜ͱΛ ࣔͨ͠
n কདྷతʹσʔλΛޮΑ͘͏ํ๏Λࡧ͢Δ͖ ·ͱΊ
·ͱΊͱߟ "QF9ܦݧΛߴʹେྔʹूΊΔख๏ ෳࡶͳλεΫͰঢ়ଶ!"͕େྔʹଘࡏ େྔͷܦݧͷੜ͕ঢ়ଶ!"Λ͘Χόʔֶ͠श͕ਐΜͩ ݱঢ়ɼϥϯμϜ୳ࡧʹΑͬͯະͷߦಈΛܦݧ ൃੜසͷ͍ঢ়ଶ!"Λॏతʹ୳ࡧ͢Δख๏ ߟ
2MFBSOJOHͷ2ؔͷߋ৽ࣜ ! "# , %# ← ! "# , %#
+ α(*#+, + - max 12∈4 52 ! "#+, , 67 − ! "# , %# ) "# : ࣌ࠁ;ͷঢ়ଶ %# :࣌ࠁ;ͷߦಈ ! "# , %# ঢ়ଶ"#Ͱߦಈ%#Λͱͬͨ߹ͷਪఆใु *#ɿ࣌ࠁ;ʹ͓͚Δใु αɿֶश -ɿׂҾ 5%ޡࠩʢ5FNQPSBMMZ%JGGFSFODFʣ 5%ޡࠩ ਪఆใुͱ࣮ࡍͷใुͷࠩ