Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
Search
umeco
March 08, 2019
Research
0
530
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
WSSIT2019で発表した研究のスライドです
umeco
March 08, 2019
Tweet
Share
More Decks by umeco
See All by umeco
Cookpad_R&D_internship_2018_byumeco
umeco
0
400
Distributed prioritized experience replay
umeco
0
440
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
580
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
570
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
440
Other Decks in Research
See All in Research
SSII2024 [OS2] 大規模言語モデルとVision & Languageのこれから
ssii
PRO
5
1.4k
医療分野におけるLLMの現状と応用可能性について
kento1109
11
3.3k
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
48
17k
第60回名古屋CV・PRML勉強会:CVPR2024論文紹介(AM-RADIO)
naok615
0
220
SSII2024 [OS1] 画像生成技術の発展: 過去10年の軌跡と未来への展望
ssii
PRO
3
1.9k
Generative Predictive Model for Autonomous Driving 第61回 コンピュータビジョン勉強会@関東 (後編)
kentosasaki
0
170
授業評価アンケートのテキストマイニング
langstat
1
340
snlp2024_multiheadMoE
takase
0
370
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
230
大規模言語モデル (LLM) の技術と最新動向
ikuyamada
33
19k
湯村研究室の紹介2024 / yumulab2024
yumulab
0
160
自動運転・AIシステムの問題を賢く探す・賢く直す / Smart Search & Repair Techniques for Automated Driving Systems and AI Systems
ishikawafyu
0
210
Featured
See All Featured
WebSockets: Embracing the real-time Web
robhawkes
59
7.3k
Designing on Purpose - Digital PM Summit 2013
jponch
114
6.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
504
140k
Scaling GitHub
holman
458
140k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
130k
Music & Morning Musume
bryan
46
6.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
653
59k
What's in a price? How to price your products and services
michaelherold
243
11k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Building Your Own Lightsaber
phodgson
102
6k
Designing the Hi-DPI Web
ddemaree
279
34k
Speed Design
sergeychernyshev
22
470
Transcript
৯ࡐ໊ͷࢄදݱֶशΛ༻͍ͨ ྉཧϨγϐͷӫཆਪఆख๏ കຊɼ๛ాɼେݪ߶ࡾ ੨ࢁֶӃେֶେֶӃ ཧֶઐ߈
ݚڀഎܠ n ۙɼ8&#্ʹ͓͍ͯྉཧϨγϐͷڞ༗͕׆ൃ n ݈߁ͷ্ͷͨΊʹྉཧϨγϐΛར༻͢Δݚڀ͕Μ n ӫཆૉΛߟྀ͢Δ߹ɼӫཆૉྔͷܭࢉ͕ඞཁ ྉཧϨγϐͷදతͳӫཆૉྔͷਪఆख๏·ͩͳ͍
৯ࡐͷӫཆૉใ Ұൠతʹຊ৯ඪ४ද ͕༻͍ΒΕΔ ৯දͷྫ kcal g
g ຊͰৗ༻͞ΕΔ৯ࡐ Hதͷӫཆૉྔ͕هࡌ
ྉཧϨγϐͷӫཆૉྔͷܭࢉํ๏ ɾɾɾ ϒϩοίϦʔ ຊʢHʣ ɾɾɾ ྉཧϨγϐ
৯ද͔Β৯ࡐʹ ରԠ͢Δ߲Λબ ৯ࡐͷάϥϜॏྔΛܭࢉ ߲ͷ֤ͱάϥϜॏྔ ͔ΒӫཆૉྔΛܭࢉ ֤৯ࡐͷӫཆૉྔΛ߹ܭ ΤωϧΪʔɿ ⁄ 33 #$%& 100) ∗ 180) = 59.4 #$%& ਫɿ ⁄ 89 ) 100) ∗ 180) = 160.2 ) λϯύΫ࣭ɿ ⁄ 4.3 ) 100) ∗ 180) = 7.74 )
ӫཆૉྔࣗಈܭࢉʹ͓͚ΔͭͷλεΫ ৯ࡐ໊͔Βਖ਼͍͠৯ද߲Λਪఆʢ߲ਪఆʣ άϥϜॏྔΛਪఆʢॏྔਪఆʣ γνϡʔ༻ͷڇϒϩοΫ ͏͠ ੜ
දه༳Ε͕͋Δ τϚτ େݸ H άϥϜදهͰͳ͍߹ਪఆ
ؔ࿈ݚڀ n ۄాΒͷݚڀ<> ରσʔλɿʮϨγϐେඦՊʯσʔλ ߲ਪఆ๏ɿจࣈྻͷશϚονϯά ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங n ןถΒͷݚڀ<> ରσʔλɿʮΩϡʔϐʔΫοΩϯάʯσʔλ ߲ਪఆ๏ɿಡΈԾ໊Ͱͷฤूڑൺֱ
ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங දه༳Ε͕େ͖͍ϢʔβߘϨγϐʹదԠ͕͍͠ hXi + 2#a,; 9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ݚڀత ಛ n ࢄදݱΛར༻͢Δ͜ͱͰදهΏΕʹରԠ Ϩγϐσʔλ͔ΒྉཧΧςΰϦ༧ଌΛ࡞͠ɼ 'PPEOBNF&ODPEFS '& Λֶश n ඪ४ॏྔࣙॻͷࣗಈߏங๏ͷఏҊ
දهΏΕ͕େ͖͍ϢʔβߘϨγϐʹରԠͰ͖Δ ؤ݈ͳӫཆૉྔਪఆख๏ͷఏҊ
ఏҊख๏ දه༳ΕʹରԠ͢ΔͨΊ৯ࡐ໊ͷࢄදݱΛར༻ ௐཧखॱʹXPSEWFDΛద༻͢Δ͜ͱͰ֫ಘՄೳ<> ৯ࡐ໊ͷࢄදݱԽʢʣ ಘΒΕΔࢄදݱܗଶૉ͝ͱʹ༩͑ΒΕΔ ಲόϥ ࢄදݱ ʢଟ࣍ݩϕΫτϧʣ ྫ
V 0 3 N ) I E . - 2 214C 6 ( 24
ఏҊख๏ ৯ࡐ໊ܗଶૉ͕ͭʹͳΔͱݶΒͳ͍ ৯ࡐ໊ͷࢄදݱԽʢʣ ̍ͭͷ߹ɿಲόϥ ಲόϥ ̎ͭͷ߹ɿಲʢόϥʣ ಲ όϥ ෳͷࢄදݱΛͭͷࢄදݱʹ·ͱΊΔ͜ͱ͕ඞཁ
ఏҊख๏ ྉཧϨγϐʹ͓͍ͯҎԼͷʹண λΠτϧ͔ΒྉཧΧςΰϦʢྉཧ໊ʣ͕நग़Մೳ ৯ࡐ͔ΒྉཧΧςΰϦ͕༧ଌՄೳ ྉཧΧςΰϦ༧ଌ ఆ൪ʂೱްΫϦʔϜγνϡʔ ৯ࡐ͔ΒྉཧΧςΰϦΛ༧ଌ͢ΔΛߏங ྫ
ྉཧΧςΰϦ ৯ࡐ໊ ࢄදݱ ྉཧΧςΰϦ
ఏҊख๏ ҎԼͷχϡʔϥϧωοτϫʔΫϞσϧͰֶश ྉཧΧςΰϦ༧ଌϞσϧ ྉཧΧςΰϦɿΫϦʔϜγνϡʔ ৯ࡐɿγνϡʔ༻ͷڇϒϩοΫɼਓࢀɼ ͡Ό͕͍ɼڇೕɼFUD (BUFE3FDVSSFOU6OJU (36 'VMM$POOFDUJPO '$
ఏҊख๏ ৯ࡐ໊Τϯίʔμ ֶशޙͷΤϯίʔμͰ৯ࡐ໊ΛࢄදݱԽ จࣈྻࣄલʹ XPSEWFDͰࢄදݱԽ ৯ࡐ໊Τϯίʔμ 'PPEOBNF&ODPEFS '& ৯ࡐ໊ͷࢄදݱ
ೖྗྫɿγνϡʔ༻ͷڇϒϩοΫ
ఏҊख๏ ࢄදݱͷڑʹج߲ͮ͘બ ಲʢόϥʣ ΤϯίʔμʹΑΔࢄදݱԽ Ϳͨ Β Ϳͨ
ίαΠϯྨࣅΛܭࢉ ৯ࡐ໊ʹ࠷ྨࣅ͢Δ߲Λબ
ఏҊख๏ ҎԼͷϧʔϧͰ৯ࡐͷॏྔΛਪఆ άϥϜදهͰ͋ΕͦΕΛ༻ ମੵදهʢେ͞͡ΧοϓʣͰ͋Εɼ 1 "# = 1
%ͱͯ͠άϥϜදهม ͦΕҎ֎ͷ߹ඪ४ॏྔࣙॻͷΛ༻ ৯ࡐॏྔͷਪఆํ๏
ఏҊख๏ طଘݚڀ< >ͰਓखͰࣙॻ͕࡞͞Ε͓ͯΓೖखෆՄ ຊݚڀͰྉཧϨγϐσʔλ͔Β ҎԼͷఆٛʹج͖ͮࣗಈతʹඪ४ॏྔࣙॻΛߏங ඪ४ॏྔࣙॻͷߏஙʢ̍ʣ શϨγϐʹ͓͚Δ֤৯ࡐͷάϥϜදهͷதԝ hXi + 2#a,;
9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ఏҊख๏ ҎԼͷϧʔϧͰඪ४ॏྔࣙॻΛߏங ྉཧϨγϐσʔλ͔Β৯ࡐ໊ͱॏྔͷϖΞΛநग़ ॏྔ͕άϥϜදهͷ߹ɼ৯ࡐ໊Τϯίʔμʔͷ ग़ྗͱͳΔࢄදݱʹରԠ͢ΔϦετʹॏྔΛՃ ֤ϦετͷதԝΛରԠ͢Δ৯ࡐͷඪ४తͳ ॏ͞ͱ͢Δ
ඪ४ॏྔࣙॻͷߏஙʢʣ
ධՁ࣮ݧ ࣮ݧσʔλ $00,1"%͕ఏڙ͢ΔྉཧϨγϐσʔλ n Ϩγϐɿສ݅ఔ n ΧςΰϦ༧ଌσʔλɿສ݅ఔ ධՁσʔλ $00,1"%্Ͱެ։͞Ε͍ͯΔྉཧϨγϐ n
Ϩγϐɿ݅ n ؚ·ΕΔ৯ࡐɿ݅ ৯දΛ༻͍ͯਓखͰӫཆૉྔΛܭࢉ ࣮ݧσʔλͱධՁσʔλ
ධՁ࣮ݧ ৯ද߲ͷਪఆਫ਼ ߲ͷΈਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ߲ͱॏྔΛਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ධՁରͱධՁࢦඪ ධՁࢦඪɿ5PQ! QSFDJTJPOʢ!ݸͷީิʹਖ਼ղ͕͋Δ֬ʣ
ؔ࿈ݚڀ<>Ͱ༻͍ΒΕ͍ͯΔධՁࢦඪ ฏۉ૬ରޡࠩ ฏۉઈରޡࠩ ૬ؔ ૬ରޡࠩҎׂ߹ ૬ରޡࠩதԝ ઈରޡࠩதԝ Ճͨ͠ධՁࢦඪ , ", :CNN !)% # $+ # ) *( '& D,Vol. 101, No. 8, pp. 1099–1109 (2018).
ධՁ࣮ݧ XPSEWFDͰಘͨࢄදݱΛ༻͍߲ͯΛਪఆ͢Δख๏ XPSEWFD NFBO ๏ XPSEWFD UPQ ๏
ൺֱख๏ʢXPSEWFDʣ ෳͷࢄදݱ ৯ࡐ໊ͷ֤ࢄදݱͱ߲ͷࢄදݱͷڑΛෳܭࢉ ࠷খ͍͞ڑΛදతͳڑͱ͢Δख๏ ʢఏҊख๏ʣෳͷࢄදݱ ࢄදݱ ࢄදݱ ฏۉ '&
ධՁ࣮ݧ ฤूڑΛ༻͍߲ͯΛਪఆ͢Δख๏ &EJUEJTUBODF๏ &EJUEJTUBODF OPSN ๏ ൺֱख๏ʢฤूڑʣ ৯ࡐ໊ͱ৯දͷ߲ؒͷฤूڑ͕࠷
ͱͳΔ߲Λબ͢Δख๏ ͷख๏ʹ͓͚ΔฤूڑΛ͍ํͷจࣈྻͰׂͬͨ ฤूڑΛ༻͍Δख๏
࣮ݧ݁Ռͱߟ ৯ද߲ਪఆਫ਼ͷൺֱ ! -! ӫཆਪఆͰॏཁͳ5PQͰͷਫ਼ͰɼఏҊख๏ߴ͍༏Ґੑ
࣮ݧ݁Ռͱߟ ߲ਪఆਫ਼ͷൺֱ -! ! ฤूڑ ݸ͔ΒީิΛ૿ͯ͠ਫ਼্͕ঢͮ͠Β͔ͬͨ
࣮ݧ݁Ռͱߟ ఏҊख๏͕ਖ਼ղɼฤूڑ͕ෆਖ਼ղͩͬͨྫ ߲ਪఆͰͷఏҊख๏ͷ༏Ґੑ !) " %( ' ,
* * $+ &+ # # จࣈྻͱͯ͠ҟͳΔ͕ɼྨࣅ͢Δ֓೦ͷ৯ࡐΛબՄೳ ฤूڑͰจࣈྻͱͯ͠ҟͳΔ߹ਖ਼ղ͕ࠔ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 શͯͷධՁࢦඪͰఏҊख๏͕༏Ґ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ฏۉͱதԝʹେ͖ͳ͕ࠩ͋Γɼ֎Εతͳαϯϓϧ͕ଘࡏ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ࢄදݱख๏͕ฤूڑख๏ΑΓߴ͍ਫ਼
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ఏҊख๏ͷ༏Ґੑ͕খ͘͞ͳ͍ͬͯΔ
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷΈਪఆʢ߲ਖ਼ղϥϕϧʣͨ͠߹Ͱਫ਼͕ѱ͍
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷਪఆਫ਼͕ѱ͍͜ͱ͔Βɼ༏Ґੑ͕খ͘͞ͳͬͨ
·ͱΊ n ྉཧΧςΰϦ༧ଌΛ࡞͠ɼֶशͨ͠৯ࡐ໊ ΤϯίʔμΛ༻͍ͯ৯ද߲Λਪఆͨ͠ n ఏҊख๏࣮ݧʹΑΓɼ৯ද߲ͷ༧ଌʹ ͓͍ͯ༏ҐੑΛࣔͨ͠ nॏྔਪఆͷޡࠩʹΑͬͯɼશࣗಈͰͷӫཆૉྔͷ ਪఆޡࠩେ͖͘ͳͬͨ
ࠓޙͷ՝ n ॏྔඪ४ࣙॻͷߏஙํ๏Λݟ͠ɼ৯ࡐॏྔͷ ਪఆޡࠩΛখ͘͢͞Δ n ௐཧखॱ͔Β৯ࡐͷঢ়ଶʢੜɼΏͰɼᖱΊʣΛ ਪఆ͢Δ͜ͱͰɼӫཆૉྔͷਪఆޡࠩΛখ͘͢͞Δ n ྉཧΧςΰϦ༧ଌͰͷɼޡநग़ΧςΰϦͷ আڈʹΑΔఏҊख๏ͷਫ਼্
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
!"#$%&%'(@* = 1 ( - ./0 1 2. ∩
4.,0 , 4.,6 , … , 4.,8 (ධՁσʔλͷ 2.%൪ͷධՁσʔλͰͷਖ਼ղϥϕϧ 4.,9 %൪ͷධՁσʔλͰͷ:൪ͷީิ 5PQ* QSFDJTJPOͷఆٛࣜ
ଞͷӫཆૉͰͷਪఆޡࠩʢఏҊख๏ʣ 0 .1 2 ) % ) %
) ( %
ఏҊख๏͕ෆਖ਼ղɼฤूڑ͕ਖ਼ղͩͬͨྫ ఏҊख๏ͷ & #% $( !" !
! ' ' ' ' ৯ࡐͷΘΕํ͕ࠅࣅ͢Δ৯ࡐࢄදݱֶश͕͍͠