Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
Search
umeco
March 08, 2019
Research
0
560
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
WSSIT2019で発表した研究のスライドです
umeco
March 08, 2019
Tweet
Share
More Decks by umeco
See All by umeco
Clineプロンプト徹底解剖
umeco
0
37
LLMでの多言語対応どうする問題
umeco
0
130
大生成AI時代の新規事業戦略を考える
umeco
0
120
Cookpad_R&D_internship_2018_byumeco
umeco
0
440
Distributed prioritized experience replay
umeco
0
480
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
620
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
600
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
490
Other Decks in Research
See All in Research
請求書仕分け自動化での物体検知モデル活用 / Utilization of Object Detection Models in Automated Invoice Sorting
sansan_randd
0
190
VAGeo: View-specific Attention for Cross-View Object Geo-Localization
satai
3
230
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
240
[論文紹介] iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
shiba4839
0
150
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
870
研究テーマのデザインと研究遂行の方法論
hisashiishihara
5
1.2k
資産間の相関関係を頑健に評価する指標を用いたファクターアローケーション戦略の構築
nomamist
0
200
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
430
Mathematics in the Age of AI and the 4 Generation University
hachama
0
150
[輪講] Transformer Layers as Painters
nk35jk
4
770
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
390
Sosiaalisen median katsaus 03/2025 + tekoäly
hponka
0
950
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Raft: Consensus for Rubyists
vanstee
137
6.9k
How to Ace a Technical Interview
jacobian
276
23k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Code Reviewing Like a Champion
maltzj
523
40k
Docker and Python
trallard
44
3.4k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
৯ࡐ໊ͷࢄදݱֶशΛ༻͍ͨ ྉཧϨγϐͷӫཆਪఆख๏ കຊɼ๛ాɼେݪ߶ࡾ ੨ࢁֶӃେֶେֶӃ ཧֶઐ߈
ݚڀഎܠ n ۙɼ8&#্ʹ͓͍ͯྉཧϨγϐͷڞ༗͕׆ൃ n ݈߁ͷ্ͷͨΊʹྉཧϨγϐΛར༻͢Δݚڀ͕Μ n ӫཆૉΛߟྀ͢Δ߹ɼӫཆૉྔͷܭࢉ͕ඞཁ ྉཧϨγϐͷදతͳӫཆૉྔͷਪఆख๏·ͩͳ͍
৯ࡐͷӫཆૉใ Ұൠతʹຊ৯ඪ४ද ͕༻͍ΒΕΔ ৯දͷྫ kcal g
g ຊͰৗ༻͞ΕΔ৯ࡐ Hதͷӫཆૉྔ͕هࡌ
ྉཧϨγϐͷӫཆૉྔͷܭࢉํ๏ ɾɾɾ ϒϩοίϦʔ ຊʢHʣ ɾɾɾ ྉཧϨγϐ
৯ද͔Β৯ࡐʹ ରԠ͢Δ߲Λબ ৯ࡐͷάϥϜॏྔΛܭࢉ ߲ͷ֤ͱάϥϜॏྔ ͔ΒӫཆૉྔΛܭࢉ ֤৯ࡐͷӫཆૉྔΛ߹ܭ ΤωϧΪʔɿ ⁄ 33 #$%& 100) ∗ 180) = 59.4 #$%& ਫɿ ⁄ 89 ) 100) ∗ 180) = 160.2 ) λϯύΫ࣭ɿ ⁄ 4.3 ) 100) ∗ 180) = 7.74 )
ӫཆૉྔࣗಈܭࢉʹ͓͚ΔͭͷλεΫ ৯ࡐ໊͔Βਖ਼͍͠৯ද߲Λਪఆʢ߲ਪఆʣ άϥϜॏྔΛਪఆʢॏྔਪఆʣ γνϡʔ༻ͷڇϒϩοΫ ͏͠ ੜ
දه༳Ε͕͋Δ τϚτ େݸ H άϥϜදهͰͳ͍߹ਪఆ
ؔ࿈ݚڀ n ۄాΒͷݚڀ<> ରσʔλɿʮϨγϐେඦՊʯσʔλ ߲ਪఆ๏ɿจࣈྻͷશϚονϯά ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங n ןถΒͷݚڀ<> ରσʔλɿʮΩϡʔϐʔΫοΩϯάʯσʔλ ߲ਪఆ๏ɿಡΈԾ໊Ͱͷฤूڑൺֱ
ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங දه༳Ε͕େ͖͍ϢʔβߘϨγϐʹదԠ͕͍͠ hXi + 2#a,; 9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ݚڀత ಛ n ࢄදݱΛར༻͢Δ͜ͱͰදهΏΕʹରԠ Ϩγϐσʔλ͔ΒྉཧΧςΰϦ༧ଌΛ࡞͠ɼ 'PPEOBNF&ODPEFS '& Λֶश n ඪ४ॏྔࣙॻͷࣗಈߏங๏ͷఏҊ
දهΏΕ͕େ͖͍ϢʔβߘϨγϐʹରԠͰ͖Δ ؤ݈ͳӫཆૉྔਪఆख๏ͷఏҊ
ఏҊख๏ දه༳ΕʹରԠ͢ΔͨΊ৯ࡐ໊ͷࢄදݱΛར༻ ௐཧखॱʹXPSEWFDΛద༻͢Δ͜ͱͰ֫ಘՄೳ<> ৯ࡐ໊ͷࢄදݱԽʢʣ ಘΒΕΔࢄදݱܗଶૉ͝ͱʹ༩͑ΒΕΔ ಲόϥ ࢄදݱ ʢଟ࣍ݩϕΫτϧʣ ྫ
V 0 3 N ) I E . - 2 214C 6 ( 24
ఏҊख๏ ৯ࡐ໊ܗଶૉ͕ͭʹͳΔͱݶΒͳ͍ ৯ࡐ໊ͷࢄදݱԽʢʣ ̍ͭͷ߹ɿಲόϥ ಲόϥ ̎ͭͷ߹ɿಲʢόϥʣ ಲ όϥ ෳͷࢄදݱΛͭͷࢄදݱʹ·ͱΊΔ͜ͱ͕ඞཁ
ఏҊख๏ ྉཧϨγϐʹ͓͍ͯҎԼͷʹண λΠτϧ͔ΒྉཧΧςΰϦʢྉཧ໊ʣ͕நग़Մೳ ৯ࡐ͔ΒྉཧΧςΰϦ͕༧ଌՄೳ ྉཧΧςΰϦ༧ଌ ఆ൪ʂೱްΫϦʔϜγνϡʔ ৯ࡐ͔ΒྉཧΧςΰϦΛ༧ଌ͢ΔΛߏங ྫ
ྉཧΧςΰϦ ৯ࡐ໊ ࢄදݱ ྉཧΧςΰϦ
ఏҊख๏ ҎԼͷχϡʔϥϧωοτϫʔΫϞσϧͰֶश ྉཧΧςΰϦ༧ଌϞσϧ ྉཧΧςΰϦɿΫϦʔϜγνϡʔ ৯ࡐɿγνϡʔ༻ͷڇϒϩοΫɼਓࢀɼ ͡Ό͕͍ɼڇೕɼFUD (BUFE3FDVSSFOU6OJU (36 'VMM$POOFDUJPO '$
ఏҊख๏ ৯ࡐ໊Τϯίʔμ ֶशޙͷΤϯίʔμͰ৯ࡐ໊ΛࢄදݱԽ จࣈྻࣄલʹ XPSEWFDͰࢄදݱԽ ৯ࡐ໊Τϯίʔμ 'PPEOBNF&ODPEFS '& ৯ࡐ໊ͷࢄදݱ
ೖྗྫɿγνϡʔ༻ͷڇϒϩοΫ
ఏҊख๏ ࢄදݱͷڑʹج߲ͮ͘બ ಲʢόϥʣ ΤϯίʔμʹΑΔࢄදݱԽ Ϳͨ Β Ϳͨ
ίαΠϯྨࣅΛܭࢉ ৯ࡐ໊ʹ࠷ྨࣅ͢Δ߲Λબ
ఏҊख๏ ҎԼͷϧʔϧͰ৯ࡐͷॏྔΛਪఆ άϥϜදهͰ͋ΕͦΕΛ༻ ମੵදهʢେ͞͡ΧοϓʣͰ͋Εɼ 1 "# = 1
%ͱͯ͠άϥϜදهม ͦΕҎ֎ͷ߹ඪ४ॏྔࣙॻͷΛ༻ ৯ࡐॏྔͷਪఆํ๏
ఏҊख๏ طଘݚڀ< >ͰਓखͰࣙॻ͕࡞͞Ε͓ͯΓೖखෆՄ ຊݚڀͰྉཧϨγϐσʔλ͔Β ҎԼͷఆٛʹج͖ͮࣗಈతʹඪ४ॏྔࣙॻΛߏங ඪ४ॏྔࣙॻͷߏஙʢ̍ʣ શϨγϐʹ͓͚Δ֤৯ࡐͷάϥϜදهͷதԝ hXi + 2#a,;
9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ఏҊख๏ ҎԼͷϧʔϧͰඪ४ॏྔࣙॻΛߏங ྉཧϨγϐσʔλ͔Β৯ࡐ໊ͱॏྔͷϖΞΛநग़ ॏྔ͕άϥϜදهͷ߹ɼ৯ࡐ໊Τϯίʔμʔͷ ग़ྗͱͳΔࢄදݱʹରԠ͢ΔϦετʹॏྔΛՃ ֤ϦετͷதԝΛରԠ͢Δ৯ࡐͷඪ४తͳ ॏ͞ͱ͢Δ
ඪ४ॏྔࣙॻͷߏஙʢʣ
ධՁ࣮ݧ ࣮ݧσʔλ $00,1"%͕ఏڙ͢ΔྉཧϨγϐσʔλ n Ϩγϐɿສ݅ఔ n ΧςΰϦ༧ଌσʔλɿສ݅ఔ ධՁσʔλ $00,1"%্Ͱެ։͞Ε͍ͯΔྉཧϨγϐ n
Ϩγϐɿ݅ n ؚ·ΕΔ৯ࡐɿ݅ ৯දΛ༻͍ͯਓखͰӫཆૉྔΛܭࢉ ࣮ݧσʔλͱධՁσʔλ
ධՁ࣮ݧ ৯ද߲ͷਪఆਫ਼ ߲ͷΈਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ߲ͱॏྔΛਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ධՁରͱධՁࢦඪ ධՁࢦඪɿ5PQ! QSFDJTJPOʢ!ݸͷީิʹਖ਼ղ͕͋Δ֬ʣ
ؔ࿈ݚڀ<>Ͱ༻͍ΒΕ͍ͯΔධՁࢦඪ ฏۉ૬ରޡࠩ ฏۉઈରޡࠩ ૬ؔ ૬ରޡࠩҎׂ߹ ૬ରޡࠩதԝ ઈରޡࠩதԝ Ճͨ͠ධՁࢦඪ , ", :CNN !)% # $+ # ) *( '& D,Vol. 101, No. 8, pp. 1099–1109 (2018).
ධՁ࣮ݧ XPSEWFDͰಘͨࢄදݱΛ༻͍߲ͯΛਪఆ͢Δख๏ XPSEWFD NFBO ๏ XPSEWFD UPQ ๏
ൺֱख๏ʢXPSEWFDʣ ෳͷࢄදݱ ৯ࡐ໊ͷ֤ࢄදݱͱ߲ͷࢄදݱͷڑΛෳܭࢉ ࠷খ͍͞ڑΛදతͳڑͱ͢Δख๏ ʢఏҊख๏ʣෳͷࢄදݱ ࢄදݱ ࢄදݱ ฏۉ '&
ධՁ࣮ݧ ฤूڑΛ༻͍߲ͯΛਪఆ͢Δख๏ &EJUEJTUBODF๏ &EJUEJTUBODF OPSN ๏ ൺֱख๏ʢฤूڑʣ ৯ࡐ໊ͱ৯දͷ߲ؒͷฤूڑ͕࠷
ͱͳΔ߲Λબ͢Δख๏ ͷख๏ʹ͓͚ΔฤूڑΛ͍ํͷจࣈྻͰׂͬͨ ฤूڑΛ༻͍Δख๏
࣮ݧ݁Ռͱߟ ৯ද߲ਪఆਫ਼ͷൺֱ ! -! ӫཆਪఆͰॏཁͳ5PQͰͷਫ਼ͰɼఏҊख๏ߴ͍༏Ґੑ
࣮ݧ݁Ռͱߟ ߲ਪఆਫ਼ͷൺֱ -! ! ฤूڑ ݸ͔ΒީิΛ૿ͯ͠ਫ਼্͕ঢͮ͠Β͔ͬͨ
࣮ݧ݁Ռͱߟ ఏҊख๏͕ਖ਼ղɼฤूڑ͕ෆਖ਼ղͩͬͨྫ ߲ਪఆͰͷఏҊख๏ͷ༏Ґੑ !) " %( ' ,
* * $+ &+ # # จࣈྻͱͯ͠ҟͳΔ͕ɼྨࣅ͢Δ֓೦ͷ৯ࡐΛબՄೳ ฤूڑͰจࣈྻͱͯ͠ҟͳΔ߹ਖ਼ղ͕ࠔ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 શͯͷධՁࢦඪͰఏҊख๏͕༏Ґ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ฏۉͱதԝʹେ͖ͳ͕ࠩ͋Γɼ֎Εతͳαϯϓϧ͕ଘࡏ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ࢄදݱख๏͕ฤूڑख๏ΑΓߴ͍ਫ਼
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ఏҊख๏ͷ༏Ґੑ͕খ͘͞ͳ͍ͬͯΔ
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷΈਪఆʢ߲ਖ਼ղϥϕϧʣͨ͠߹Ͱਫ਼͕ѱ͍
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷਪఆਫ਼͕ѱ͍͜ͱ͔Βɼ༏Ґੑ͕খ͘͞ͳͬͨ
·ͱΊ n ྉཧΧςΰϦ༧ଌΛ࡞͠ɼֶशͨ͠৯ࡐ໊ ΤϯίʔμΛ༻͍ͯ৯ද߲Λਪఆͨ͠ n ఏҊख๏࣮ݧʹΑΓɼ৯ද߲ͷ༧ଌʹ ͓͍ͯ༏ҐੑΛࣔͨ͠ nॏྔਪఆͷޡࠩʹΑͬͯɼશࣗಈͰͷӫཆૉྔͷ ਪఆޡࠩେ͖͘ͳͬͨ
ࠓޙͷ՝ n ॏྔඪ४ࣙॻͷߏஙํ๏Λݟ͠ɼ৯ࡐॏྔͷ ਪఆޡࠩΛখ͘͢͞Δ n ௐཧखॱ͔Β৯ࡐͷঢ়ଶʢੜɼΏͰɼᖱΊʣΛ ਪఆ͢Δ͜ͱͰɼӫཆૉྔͷਪఆޡࠩΛখ͘͢͞Δ n ྉཧΧςΰϦ༧ଌͰͷɼޡநग़ΧςΰϦͷ আڈʹΑΔఏҊख๏ͷਫ਼্
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
!"#$%&%'(@* = 1 ( - ./0 1 2. ∩
4.,0 , 4.,6 , … , 4.,8 (ධՁσʔλͷ 2.%൪ͷධՁσʔλͰͷਖ਼ղϥϕϧ 4.,9 %൪ͷධՁσʔλͰͷ:൪ͷީิ 5PQ* QSFDJTJPOͷఆٛࣜ
ଞͷӫཆૉͰͷਪఆޡࠩʢఏҊख๏ʣ 0 .1 2 ) % ) %
) ( %
ఏҊख๏͕ෆਖ਼ղɼฤूڑ͕ਖ਼ղͩͬͨྫ ఏҊख๏ͷ & #% $( !" !
! ' ' ' ' ৯ࡐͷΘΕํ͕ࠅࣅ͢Δ৯ࡐࢄදݱֶश͕͍͠