Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
Search
umeco
March 08, 2019
Research
0
530
【WSSIT2019】食材名の分散表現学習を用いた料理レシピの栄養推定手法
WSSIT2019で発表した研究のスライドです
umeco
March 08, 2019
Tweet
Share
More Decks by umeco
See All by umeco
Cookpad_R&D_internship_2018_byumeco
umeco
0
410
Distributed prioritized experience replay
umeco
0
450
【WSSIT2018】料理レシピの分散表現を用いた代替食材の発見手法
umeco
2
590
Using an Artificial Financial Market for studying a Cryptocurrency Market
umeco
0
570
【WSSIT2017】過去の変動に対する類似検索を用いた短時間USD/JPY為替レート予測
umeco
0
460
Other Decks in Research
See All in Research
「並列化時代の乱数生成」
abap34
3
900
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.1k
marukotenant01/tenant-20240826
marketing2024
0
520
機械学習でヒトの行動を変える
hiromu1996
1
380
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
データサイエンティストをめぐる環境の違い 2024年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
780
Composed image retrieval for remote sensing
satai
2
130
さんかくのテスト.pdf
sankaku0724
0
520
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
150
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
780
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
160
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3k
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
What's in a price? How to price your products and services
michaelherold
243
12k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
440
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Visualization
eitanlees
146
15k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.3k
Six Lessons from altMBA
skipperchong
27
3.5k
The Cult of Friendly URLs
andyhume
78
6.1k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Transcript
৯ࡐ໊ͷࢄදݱֶशΛ༻͍ͨ ྉཧϨγϐͷӫཆਪఆख๏ കຊɼ๛ాɼେݪ߶ࡾ ੨ࢁֶӃେֶେֶӃ ཧֶઐ߈
ݚڀഎܠ n ۙɼ8&#্ʹ͓͍ͯྉཧϨγϐͷڞ༗͕׆ൃ n ݈߁ͷ্ͷͨΊʹྉཧϨγϐΛར༻͢Δݚڀ͕Μ n ӫཆૉΛߟྀ͢Δ߹ɼӫཆૉྔͷܭࢉ͕ඞཁ ྉཧϨγϐͷදతͳӫཆૉྔͷਪఆख๏·ͩͳ͍
৯ࡐͷӫཆૉใ Ұൠతʹຊ৯ඪ४ද ͕༻͍ΒΕΔ ৯දͷྫ kcal g
g ຊͰৗ༻͞ΕΔ৯ࡐ Hதͷӫཆૉྔ͕هࡌ
ྉཧϨγϐͷӫཆૉྔͷܭࢉํ๏ ɾɾɾ ϒϩοίϦʔ ຊʢHʣ ɾɾɾ ྉཧϨγϐ
৯ද͔Β৯ࡐʹ ରԠ͢Δ߲Λબ ৯ࡐͷάϥϜॏྔΛܭࢉ ߲ͷ֤ͱάϥϜॏྔ ͔ΒӫཆૉྔΛܭࢉ ֤৯ࡐͷӫཆૉྔΛ߹ܭ ΤωϧΪʔɿ ⁄ 33 #$%& 100) ∗ 180) = 59.4 #$%& ਫɿ ⁄ 89 ) 100) ∗ 180) = 160.2 ) λϯύΫ࣭ɿ ⁄ 4.3 ) 100) ∗ 180) = 7.74 )
ӫཆૉྔࣗಈܭࢉʹ͓͚ΔͭͷλεΫ ৯ࡐ໊͔Βਖ਼͍͠৯ද߲Λਪఆʢ߲ਪఆʣ άϥϜॏྔΛਪఆʢॏྔਪఆʣ γνϡʔ༻ͷڇϒϩοΫ ͏͠ ੜ
දه༳Ε͕͋Δ τϚτ େݸ H άϥϜදهͰͳ͍߹ਪఆ
ؔ࿈ݚڀ n ۄాΒͷݚڀ<> ରσʔλɿʮϨγϐେඦՊʯσʔλ ߲ਪఆ๏ɿจࣈྻͷશϚονϯά ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங n ןถΒͷݚڀ<> ରσʔλɿʮΩϡʔϐʔΫοΩϯάʯσʔλ ߲ਪఆ๏ɿಡΈԾ໊Ͱͷฤूڑൺֱ
ॏྔਪఆ๏ɿਓखʹΑΔॏྔมࣙॻͷߏங දه༳Ε͕େ͖͍ϢʔβߘϨγϐʹదԠ͕͍͠ hXi + 2#a,; 9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ݚڀత ಛ n ࢄදݱΛར༻͢Δ͜ͱͰදهΏΕʹରԠ Ϩγϐσʔλ͔ΒྉཧΧςΰϦ༧ଌΛ࡞͠ɼ 'PPEOBNF&ODPEFS '& Λֶश n ඪ४ॏྔࣙॻͷࣗಈߏங๏ͷఏҊ
දهΏΕ͕େ͖͍ϢʔβߘϨγϐʹରԠͰ͖Δ ؤ݈ͳӫཆૉྔਪఆख๏ͷఏҊ
ఏҊख๏ දه༳ΕʹରԠ͢ΔͨΊ৯ࡐ໊ͷࢄදݱΛར༻ ௐཧखॱʹXPSEWFDΛద༻͢Δ͜ͱͰ֫ಘՄೳ<> ৯ࡐ໊ͷࢄදݱԽʢʣ ಘΒΕΔࢄදݱܗଶૉ͝ͱʹ༩͑ΒΕΔ ಲόϥ ࢄදݱ ʢଟ࣍ݩϕΫτϧʣ ྫ
V 0 3 N ) I E . - 2 214C 6 ( 24
ఏҊख๏ ৯ࡐ໊ܗଶૉ͕ͭʹͳΔͱݶΒͳ͍ ৯ࡐ໊ͷࢄදݱԽʢʣ ̍ͭͷ߹ɿಲόϥ ಲόϥ ̎ͭͷ߹ɿಲʢόϥʣ ಲ όϥ ෳͷࢄදݱΛͭͷࢄදݱʹ·ͱΊΔ͜ͱ͕ඞཁ
ఏҊख๏ ྉཧϨγϐʹ͓͍ͯҎԼͷʹண λΠτϧ͔ΒྉཧΧςΰϦʢྉཧ໊ʣ͕நग़Մೳ ৯ࡐ͔ΒྉཧΧςΰϦ͕༧ଌՄೳ ྉཧΧςΰϦ༧ଌ ఆ൪ʂೱްΫϦʔϜγνϡʔ ৯ࡐ͔ΒྉཧΧςΰϦΛ༧ଌ͢ΔΛߏங ྫ
ྉཧΧςΰϦ ৯ࡐ໊ ࢄදݱ ྉཧΧςΰϦ
ఏҊख๏ ҎԼͷχϡʔϥϧωοτϫʔΫϞσϧͰֶश ྉཧΧςΰϦ༧ଌϞσϧ ྉཧΧςΰϦɿΫϦʔϜγνϡʔ ৯ࡐɿγνϡʔ༻ͷڇϒϩοΫɼਓࢀɼ ͡Ό͕͍ɼڇೕɼFUD (BUFE3FDVSSFOU6OJU (36 'VMM$POOFDUJPO '$
ఏҊख๏ ৯ࡐ໊Τϯίʔμ ֶशޙͷΤϯίʔμͰ৯ࡐ໊ΛࢄදݱԽ จࣈྻࣄલʹ XPSEWFDͰࢄදݱԽ ৯ࡐ໊Τϯίʔμ 'PPEOBNF&ODPEFS '& ৯ࡐ໊ͷࢄදݱ
ೖྗྫɿγνϡʔ༻ͷڇϒϩοΫ
ఏҊख๏ ࢄදݱͷڑʹج߲ͮ͘બ ಲʢόϥʣ ΤϯίʔμʹΑΔࢄදݱԽ Ϳͨ Β Ϳͨ
ίαΠϯྨࣅΛܭࢉ ৯ࡐ໊ʹ࠷ྨࣅ͢Δ߲Λબ
ఏҊख๏ ҎԼͷϧʔϧͰ৯ࡐͷॏྔΛਪఆ άϥϜදهͰ͋ΕͦΕΛ༻ ମੵදهʢେ͞͡ΧοϓʣͰ͋Εɼ 1 "# = 1
%ͱͯ͠άϥϜදهม ͦΕҎ֎ͷ߹ඪ४ॏྔࣙॻͷΛ༻ ৯ࡐॏྔͷਪఆํ๏
ఏҊख๏ طଘݚڀ< >ͰਓखͰࣙॻ͕࡞͞Ε͓ͯΓೖखෆՄ ຊݚڀͰྉཧϨγϐσʔλ͔Β ҎԼͷఆٛʹج͖ͮࣗಈతʹඪ४ॏྔࣙॻΛߏங ඪ४ॏྔࣙॻͷߏஙʢ̍ʣ શϨγϐʹ͓͚Δ֤৯ࡐͷάϥϜදهͷதԝ hXi + 2#a,;
9m51 MImN'4O @Gn@ACK<2 _QCm3B :*JE @mLPD;7=H?3MKRbcdeYWX]ST gkjVQcYU[QRYWX]SVQ hYi)&%2 #$a,"FmMPA>.6 8/-O@Gn @ACK2!*0( b2 gkjVQ`YTQfkVQ^TQllVQ`^\–`_ZQRYWW`SVQ
ఏҊख๏ ҎԼͷϧʔϧͰඪ४ॏྔࣙॻΛߏங ྉཧϨγϐσʔλ͔Β৯ࡐ໊ͱॏྔͷϖΞΛநग़ ॏྔ͕άϥϜදهͷ߹ɼ৯ࡐ໊Τϯίʔμʔͷ ग़ྗͱͳΔࢄදݱʹରԠ͢ΔϦετʹॏྔΛՃ ֤ϦετͷதԝΛରԠ͢Δ৯ࡐͷඪ४తͳ ॏ͞ͱ͢Δ
ඪ४ॏྔࣙॻͷߏஙʢʣ
ධՁ࣮ݧ ࣮ݧσʔλ $00,1"%͕ఏڙ͢ΔྉཧϨγϐσʔλ n Ϩγϐɿສ݅ఔ n ΧςΰϦ༧ଌσʔλɿສ݅ఔ ධՁσʔλ $00,1"%্Ͱެ։͞Ε͍ͯΔྉཧϨγϐ n
Ϩγϐɿ݅ n ؚ·ΕΔ৯ࡐɿ݅ ৯දΛ༻͍ͯਓखͰӫཆૉྔΛܭࢉ ࣮ݧσʔλͱධՁσʔλ
ධՁ࣮ݧ ৯ද߲ͷਪఆਫ਼ ߲ͷΈਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ߲ͱॏྔΛਪఆͨ࣌͠ͷӫཆૉྔਪఆਫ਼ ධՁରͱධՁࢦඪ ධՁࢦඪɿ5PQ! QSFDJTJPOʢ!ݸͷީิʹਖ਼ղ͕͋Δ֬ʣ
ؔ࿈ݚڀ<>Ͱ༻͍ΒΕ͍ͯΔධՁࢦඪ ฏۉ૬ରޡࠩ ฏۉઈରޡࠩ ૬ؔ ૬ରޡࠩҎׂ߹ ૬ରޡࠩதԝ ઈରޡࠩதԝ Ճͨ͠ධՁࢦඪ , ", :CNN !)% # $+ # ) *( '& D,Vol. 101, No. 8, pp. 1099–1109 (2018).
ධՁ࣮ݧ XPSEWFDͰಘͨࢄදݱΛ༻͍߲ͯΛਪఆ͢Δख๏ XPSEWFD NFBO ๏ XPSEWFD UPQ ๏
ൺֱख๏ʢXPSEWFDʣ ෳͷࢄදݱ ৯ࡐ໊ͷ֤ࢄදݱͱ߲ͷࢄදݱͷڑΛෳܭࢉ ࠷খ͍͞ڑΛදతͳڑͱ͢Δख๏ ʢఏҊख๏ʣෳͷࢄදݱ ࢄදݱ ࢄදݱ ฏۉ '&
ධՁ࣮ݧ ฤूڑΛ༻͍߲ͯΛਪఆ͢Δख๏ &EJUEJTUBODF๏ &EJUEJTUBODF OPSN ๏ ൺֱख๏ʢฤूڑʣ ৯ࡐ໊ͱ৯දͷ߲ؒͷฤूڑ͕࠷
ͱͳΔ߲Λબ͢Δख๏ ͷख๏ʹ͓͚ΔฤूڑΛ͍ํͷจࣈྻͰׂͬͨ ฤूڑΛ༻͍Δख๏
࣮ݧ݁Ռͱߟ ৯ද߲ਪఆਫ਼ͷൺֱ ! -! ӫཆਪఆͰॏཁͳ5PQͰͷਫ਼ͰɼఏҊख๏ߴ͍༏Ґੑ
࣮ݧ݁Ռͱߟ ߲ਪఆਫ਼ͷൺֱ -! ! ฤूڑ ݸ͔ΒީิΛ૿ͯ͠ਫ਼্͕ঢͮ͠Β͔ͬͨ
࣮ݧ݁Ռͱߟ ఏҊख๏͕ਖ਼ղɼฤूڑ͕ෆਖ਼ղͩͬͨྫ ߲ਪఆͰͷఏҊख๏ͷ༏Ґੑ !) " %( ' ,
* * $+ &+ # # จࣈྻͱͯ͠ҟͳΔ͕ɼྨࣅ͢Δ֓೦ͷ৯ࡐΛબՄೳ ฤूڑͰจࣈྻͱͯ͠ҟͳΔ߹ਖ਼ղ͕ࠔ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 શͯͷධՁࢦඪͰఏҊख๏͕༏Ґ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ฏۉͱதԝʹେ͖ͳ͕ࠩ͋Γɼ֎Εతͳαϯϓϧ͕ଘࡏ
࣮ݧ݁Ռ ߲ͷΈਪఆͨ݁͠ՌʢΧϩϦʔʣ 2 5 4 . ) . ) 1%0
4 ) ) 1%0 . ( ) 3 ࢄදݱख๏͕ฤूڑख๏ΑΓߴ͍ਫ਼
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ఏҊख๏ͷ༏Ґੑ͕খ͘͞ͳ͍ͬͯΔ
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷΈਪఆʢ߲ਖ਼ղϥϕϧʣͨ͠߹Ͱਫ਼͕ѱ͍
࣮ݧ݁Ռ ߲ͱॏྔΛਪఆͨ݁͠ՌʢΧϩϦʔʣ 5% 8 .9 7)12 12 4 3 7)02
02 4 3 1( 6 ॏྔͷਪఆਫ਼͕ѱ͍͜ͱ͔Βɼ༏Ґੑ͕খ͘͞ͳͬͨ
·ͱΊ n ྉཧΧςΰϦ༧ଌΛ࡞͠ɼֶशͨ͠৯ࡐ໊ ΤϯίʔμΛ༻͍ͯ৯ද߲Λਪఆͨ͠ n ఏҊख๏࣮ݧʹΑΓɼ৯ද߲ͷ༧ଌʹ ͓͍ͯ༏ҐੑΛࣔͨ͠ nॏྔਪఆͷޡࠩʹΑͬͯɼશࣗಈͰͷӫཆૉྔͷ ਪఆޡࠩେ͖͘ͳͬͨ
ࠓޙͷ՝ n ॏྔඪ४ࣙॻͷߏஙํ๏Λݟ͠ɼ৯ࡐॏྔͷ ਪఆޡࠩΛখ͘͢͞Δ n ௐཧखॱ͔Β৯ࡐͷঢ়ଶʢੜɼΏͰɼᖱΊʣΛ ਪఆ͢Δ͜ͱͰɼӫཆૉྔͷਪఆޡࠩΛখ͘͢͞Δ n ྉཧΧςΰϦ༧ଌͰͷɼޡநग़ΧςΰϦͷ আڈʹΑΔఏҊख๏ͷਫ਼্
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠
!"#$%&%'(@* = 1 ( - ./0 1 2. ∩
4.,0 , 4.,6 , … , 4.,8 (ධՁσʔλͷ 2.%൪ͷධՁσʔλͰͷਖ਼ղϥϕϧ 4.,9 %൪ͷධՁσʔλͰͷ:൪ͷީิ 5PQ* QSFDJTJPOͷఆٛࣜ
ଞͷӫཆૉͰͷਪఆޡࠩʢఏҊख๏ʣ 0 .1 2 ) % ) %
) ( %
ఏҊख๏͕ෆਖ਼ղɼฤूڑ͕ਖ਼ղͩͬͨྫ ఏҊख๏ͷ & #% $( !" !
! ' ' ' ' ৯ࡐͷΘΕํ͕ࠅࣅ͢Δ৯ࡐࢄදݱֶश͕͍͠