Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Cha...
Search
Shotaro Ishihara
April 18, 2018
Technology
0
330
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Chapter 7
http://bookclub.kodansha.co.jp/product?isbn=9784061529021
Shotaro Ishihara
April 18, 2018
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
370
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
67
JOAI2025講評 / joai2025-review
upura
0
1.1k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
190
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
73
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
310
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
95
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
110
Other Decks in Technology
See All in Technology
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
340
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
730
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
4
470
障害対応訓練、その前に
coconala_engineer
0
150
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
1.7k
高度サイバー人材育成専科(後半)
nomizone
0
330
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
520
ActiveJobUpdates
igaiga
1
280
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
340
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
150
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
620
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
120
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
63
Google's AI Overviews - The New Search
badams
0
870
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Spectacular Lies of Maps
axbom
PRO
1
400
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
740
Rails Girls Zürich Keynote
gr2m
95
14k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.7k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
7 2016/08/20 1
2 l RNN#' l RNN "
" l RNN & !( $%
3
4 We can get
an idea of the quality of the learned feature vectors by displaying them in a 2-D map.
5 $%"! '(Bag of Words ')N-gram
We can get an idea of the quality " #& or
6 l RNN#' l RNN "
" l RNN & !( $%
7 l RNN#' l RNN "
" l RNN & !( $%
RNN 8
RNN 9 x1 z0
RNN 10 z1 y1
RNN 11 x2 z1
RNN 12 z2 y2
13 l RNN#' l RNN "
" l RNN & !( $%
RNN 14 xt zt-1
y t →
RNN 15 xt zt-1 y
t →
16 l RNN#' l RNN "
" l RNN & !( $%
RNN 17 Back Propagation through time
BPTT 18 % x #!% d $ & y
, ... , y ' % δ ( δ ) * " t t 1 t k out, t j t
BPTT 19 δ k out, 1 δ k out, 2
δ k out, 3 δ k out, t
BPTT 20 t1 t δ
j t
BPTT 21
22 l RNN#' l RNN "
" l RNN & !( $%
23 l RNN#' l RNN "
" l RNN & !( $%
RNN 24 #@10+'<3= 0A; ← &91,?7 &9$)+/" ) 4
*58&90 or :( !.2- ← RNN%>264
LSTM 25 '% (Long Short-Term Memory, LSTM) RNN &# →
&# !$ (+) "*
LSTM 26
LSTM 27
LSTM 28
LSTM 29
30 l RNN#' l RNN "
" l RNN & !( $%
RNN 31 “w n” …… ^
(HMM) 32 %! $ "# $ "#
%!
33 $ .)-+ (Connectionist temporal classification, CTC) HMM#
! RNN &, %*"(, ' &,
CTC 34 X = x , ... ,
x l = l , … , l = p( l | X ) 1 t 1 |l|
CTC 35 l = ‘ab’ t = 6
a, b, , , , a, , , b, , , , , a, , b …
CTC 36 = p( l | X ) a, b,
, , , a, a, , b, , , , , a, , b … p( l1 | X ) = p( l2 | X ) = p( l3 | X ) = = p(a)*p(b)*p( )*p( ) *p( )*p( ) = p(a)*p(a)*p( )*p(b) *p( )*p( ) = p( )*p( )*p( )*p(a)*p( )*p(b)
37 • ;&B(2015):5:#3, .<2 • /%) in $"#3 E?!(2015):
http://www.slideshare.net/shotarosano5/chapter7-50542830, 2016A8*12@C • Recurrent Neural Networks(2014): http://www.slideshare.net/beam2d/pfi-seminar- 20141030rnn?qid=9e5894c7-f162-4da3-b082-a1e4963689e8&v=&b=&from_search=17, 2016A8*12@C • =86 (2013): 7+,4D19+,4D, 2 • LSTM 0(>-'(2016): http://qiita.com/t_Signull/items/21b82be280b46f467d1b, 2016A8*12@C • A. Graves(2008): Supervised sequence labelling with Recurrent Neural Networks, PhD thesis, Technische Universität München, https://www.cs.toronto.edu/~graves/preprint.pdf