Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Cha...
Search
Shotaro Ishihara
April 18, 2018
Technology
0
330
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Chapter 7
http://bookclub.kodansha.co.jp/product?isbn=9784061529021
Shotaro Ishihara
April 18, 2018
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
280
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
370
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
66
JOAI2025講評 / joai2025-review
upura
0
1.1k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
190
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
72
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
310
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
95
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
110
Other Decks in Technology
See All in Technology
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
150
ウェルネス SaaS × AI、1,000万ユーザーを支える 業界特化 AI プロダクト開発への道のり
hacomono
PRO
0
140
2025年 開発生産「可能」性向上報告 サイロ解消からチームが能動性を獲得するまで/ 20251216 Naoki Takahashi
shift_evolve
PRO
1
200
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
11
470
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
180
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
850
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
170
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
150
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
1
1.6k
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
630
【U/day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
680
生成AIを利用するだけでなく、投資できる組織へ / Becoming an Organization That Invests in GenAI
kaminashi
0
110
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
A Tale of Four Properties
chriscoyier
162
23k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
For a Future-Friendly Web
brad_frost
180
10k
KATA
mclloyd
PRO
33
15k
4 Signs Your Business is Dying
shpigford
186
22k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Navigating Team Friction
lara
191
16k
Transcript
7 2016/08/20 1
2 l RNN#' l RNN "
" l RNN & !( $%
3
4 We can get
an idea of the quality of the learned feature vectors by displaying them in a 2-D map.
5 $%"! '(Bag of Words ')N-gram
We can get an idea of the quality " #& or
6 l RNN#' l RNN "
" l RNN & !( $%
7 l RNN#' l RNN "
" l RNN & !( $%
RNN 8
RNN 9 x1 z0
RNN 10 z1 y1
RNN 11 x2 z1
RNN 12 z2 y2
13 l RNN#' l RNN "
" l RNN & !( $%
RNN 14 xt zt-1
y t →
RNN 15 xt zt-1 y
t →
16 l RNN#' l RNN "
" l RNN & !( $%
RNN 17 Back Propagation through time
BPTT 18 % x #!% d $ & y
, ... , y ' % δ ( δ ) * " t t 1 t k out, t j t
BPTT 19 δ k out, 1 δ k out, 2
δ k out, 3 δ k out, t
BPTT 20 t1 t δ
j t
BPTT 21
22 l RNN#' l RNN "
" l RNN & !( $%
23 l RNN#' l RNN "
" l RNN & !( $%
RNN 24 #@10+'<3= 0A; ← &91,?7 &9$)+/" ) 4
*58&90 or :( !.2- ← RNN%>264
LSTM 25 '% (Long Short-Term Memory, LSTM) RNN &# →
&# !$ (+) "*
LSTM 26
LSTM 27
LSTM 28
LSTM 29
30 l RNN#' l RNN "
" l RNN & !( $%
RNN 31 “w n” …… ^
(HMM) 32 %! $ "# $ "#
%!
33 $ .)-+ (Connectionist temporal classification, CTC) HMM#
! RNN &, %*"(, ' &,
CTC 34 X = x , ... ,
x l = l , … , l = p( l | X ) 1 t 1 |l|
CTC 35 l = ‘ab’ t = 6
a, b, , , , a, , , b, , , , , a, , b …
CTC 36 = p( l | X ) a, b,
, , , a, a, , b, , , , , a, , b … p( l1 | X ) = p( l2 | X ) = p( l3 | X ) = = p(a)*p(b)*p( )*p( ) *p( )*p( ) = p(a)*p(a)*p( )*p(b) *p( )*p( ) = p( )*p( )*p( )*p(a)*p( )*p(b)
37 • ;&B(2015):5:#3, .<2 • /%) in $"#3 E?!(2015):
http://www.slideshare.net/shotarosano5/chapter7-50542830, 2016A8*12@C • Recurrent Neural Networks(2014): http://www.slideshare.net/beam2d/pfi-seminar- 20141030rnn?qid=9e5894c7-f162-4da3-b082-a1e4963689e8&v=&b=&from_search=17, 2016A8*12@C • =86 (2013): 7+,4D19+,4D, 2 • LSTM 0(>-'(2016): http://qiita.com/t_Signull/items/21b82be280b46f467d1b, 2016A8*12@C • A. Graves(2008): Supervised sequence labelling with Recurrent Neural Networks, PhD thesis, Technische Universität München, https://www.cs.toronto.edu/~graves/preprint.pdf