Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Cha...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Shotaro Ishihara
April 18, 2018
Technology
0
330
『深層学習』第7章「再帰型ニューラルネット」輪読会資料 / Deep Learning Chapter 7
http://bookclub.kodansha.co.jp/product?isbn=9784061529021
Shotaro Ishihara
April 18, 2018
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
JAPAN AI CUP Prediction Tutorial
upura
1
550
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
470
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
82
JOAI2025講評 / joai2025-review
upura
0
1.3k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
200
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
92
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
330
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
110
Other Decks in Technology
See All in Technology
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
180
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
290
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
20260204_Midosuji_Tech
takuyay0ne
1
130
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
680
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
880
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.2k
使いにくいの壁を突破する
sansantech
PRO
1
120
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
490
Featured
See All Featured
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Statistics for Hackers
jakevdp
799
230k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Making Projects Easy
brettharned
120
6.6k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
From π to Pie charts
rasagy
0
120
The World Runs on Bad Software
bkeepers
PRO
72
12k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Scaling GitHub
holman
464
140k
Context Engineering - Making Every Token Count
addyosmani
9
650
Google's AI Overviews - The New Search
badams
0
900
Transcript
7 2016/08/20 1
2 l RNN#' l RNN "
" l RNN & !( $%
3
4 We can get
an idea of the quality of the learned feature vectors by displaying them in a 2-D map.
5 $%"! '(Bag of Words ')N-gram
We can get an idea of the quality " #& or
6 l RNN#' l RNN "
" l RNN & !( $%
7 l RNN#' l RNN "
" l RNN & !( $%
RNN 8
RNN 9 x1 z0
RNN 10 z1 y1
RNN 11 x2 z1
RNN 12 z2 y2
13 l RNN#' l RNN "
" l RNN & !( $%
RNN 14 xt zt-1
y t →
RNN 15 xt zt-1 y
t →
16 l RNN#' l RNN "
" l RNN & !( $%
RNN 17 Back Propagation through time
BPTT 18 % x #!% d $ & y
, ... , y ' % δ ( δ ) * " t t 1 t k out, t j t
BPTT 19 δ k out, 1 δ k out, 2
δ k out, 3 δ k out, t
BPTT 20 t1 t δ
j t
BPTT 21
22 l RNN#' l RNN "
" l RNN & !( $%
23 l RNN#' l RNN "
" l RNN & !( $%
RNN 24 #@10+'<3= 0A; ← &91,?7 &9$)+/" ) 4
*58&90 or :( !.2- ← RNN%>264
LSTM 25 '% (Long Short-Term Memory, LSTM) RNN &# →
&# !$ (+) "*
LSTM 26
LSTM 27
LSTM 28
LSTM 29
30 l RNN#' l RNN "
" l RNN & !( $%
RNN 31 “w n” …… ^
(HMM) 32 %! $ "# $ "#
%!
33 $ .)-+ (Connectionist temporal classification, CTC) HMM#
! RNN &, %*"(, ' &,
CTC 34 X = x , ... ,
x l = l , … , l = p( l | X ) 1 t 1 |l|
CTC 35 l = ‘ab’ t = 6
a, b, , , , a, , , b, , , , , a, , b …
CTC 36 = p( l | X ) a, b,
, , , a, a, , b, , , , , a, , b … p( l1 | X ) = p( l2 | X ) = p( l3 | X ) = = p(a)*p(b)*p( )*p( ) *p( )*p( ) = p(a)*p(a)*p( )*p(b) *p( )*p( ) = p( )*p( )*p( )*p(a)*p( )*p(b)
37 • ;&B(2015):5:#3, .<2 • /%) in $"#3 E?!(2015):
http://www.slideshare.net/shotarosano5/chapter7-50542830, 2016A8*12@C • Recurrent Neural Networks(2014): http://www.slideshare.net/beam2d/pfi-seminar- 20141030rnn?qid=9e5894c7-f162-4da3-b082-a1e4963689e8&v=&b=&from_search=17, 2016A8*12@C • =86 (2013): 7+,4D19+,4D, 2 • LSTM 0(>-'(2016): http://qiita.com/t_Signull/items/21b82be280b46f467d1b, 2016A8*12@C • A. Graves(2008): Supervised sequence labelling with Recurrent Neural Networks, PhD thesis, Technische Universität München, https://www.cs.toronto.edu/~graves/preprint.pdf