Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習コンペの近年の潮流 2022 年 4 月版 / ml competition tren...
Search
Shotaro Ishihara
April 04, 2022
Technology
2
2.1k
機械学習コンペの近年の潮流 2022 年 4 月版 / ml competition trend 2022.04
ML Study #3「機械学習コンペ」
https://forkwell.connpass.com/event/240639/
での発表資料です
Shotaro Ishihara
April 04, 2022
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
54
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
140
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
210
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
680
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
upura
3
890
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
50
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
430
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
48
Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
upura
0
63
Other Decks in Technology
See All in Technology
20241220_S3 tablesの使い方を検証してみた
handy
3
380
Snowflake女子会#3 Snowpipeの良さを5分で語るよ
lana2548
0
230
AWS re:Invent 2024 ふりかえり
kongmingstrap
0
130
あの日俺達が夢見たサーバレスアーキテクチャ/the-serverless-architecture-we-dreamed-of
tomoki10
0
440
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
170
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
27
12k
Qiita埋め込み用スライド
naoki_0531
0
4.7k
ゼロから創る横断SREチーム 挑戦と進化の軌跡
rvirus0817
2
270
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
260
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
480
Amazon VPC Lattice 最新アップデート紹介 - PrivateLink も似たようなアップデートあったけど違いとは
bigmuramura
0
190
PHPからGoへのマイグレーション for DMMアフィリエイト
yabakokobayashi
1
170
Featured
See All Featured
Docker and Python
trallard
42
3.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Building Better People: How to give real-time feedback that sticks.
wjessup
365
19k
Faster Mobile Websites
deanohume
305
30k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Fireside Chat
paigeccino
34
3.1k
Embracing the Ebb and Flow
colly
84
4.5k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Building Applications with DynamoDB
mza
91
6.1k
Bash Introduction
62gerente
608
210k
Transcript
機械学習コンペの近年の潮流 2022 年 4 月版 日本経済新聞社 石原祥太郎 ML Study #3
「機械学習コンペ」 2022 年 4 月 4 日
本発表の概要 2 • 機械学習コンペを取り巻く近年の潮流を紹介 ◦ 世界最大のコンペサイト「Kaggle」での出題傾向の変化 ◦ よりよい競争環境のための創意工夫 ◦ 日本国内での動向
• 広く機械学習に関わっている方に向けて、機械学習コンペや Kaggle の 2022 年 4 月時点での実情が垣間見える発表になれ ばと考えています
自己紹介@ニュースメディア 3 • 2017 年より日本経済新聞社でデータ分析・サービス開発。 現在は研究開発部署で主任研究員を務める ◦ https://hack.nikkei.com/publications/ ◦ https://hack.nikkei.com/jobs/AI_and_datascience/
• 2013 〜 2017 年は公益財団法人東京大学新聞社で、記者・編集長・デー タ分析・文化事業・広告担当などを歴任 • ニュースメディアにおけるデータ利活用(最近は機械学習・自然言語処理の 応用)に関心がある ◦ 国際ニュースメディア協会の若手表彰で、アジア太平洋部門の最優秀賞(2022) https://www.nikkei.co.jp/nikkeiinfo/news/information/699.html
自己紹介@Kaggle 4 • Kaggle では 2019 年にチーム参加した「PetFinder.my Adoption Prediction」で優勝。 •
同年の「Kaggle Days Tokyo」では、日本経済新聞社として コンペを開催 • Kaggle 関連書籍を出版(スタートブック& 4GM 本& ??? ) • 個人活動として、ニュースレター「Weekly Kaggle News」を 2 年以上にわたり週次で発行し、購読者は 2000 人超。
目次 5 • Kaggle での出題傾向の変化 • よりよい競争環境のための創意工夫 • 日本国内での動向
機械学習コンペティションとは 6 1. 主催者がデータセットと課 題を提供 2. 参加者は評価用データ セットの正解ラベルを予測 3. 開催期間中に順位を競い
合う 4. 終了時の最終結果で順位 が確定
機械学習コンペティション × 国際会議 7 • 1997年にはデータマイニングの国際会議「KDD」にて、第1回の 「KDD Cup」が開催 ◦ 現在に至るまで毎年開催を継続
• 「NeurIPS」「RecSys」など、機械学習に関連するさまざまな国際 会議でコンペが併設されている ※ 筆者が機械学習コンペに参戦したのは 2018 年で、記述に当たっては [1][2] を参考にした [1] 馬場雪乃. 2016. “機械学習コンペティションの進展と今後の展開 .” 人工知能 31 (2): 248–53. https://www.jstage.jst.go.jp/article/jjsai/31/2/31_248/_article/-char/ja/ [2] Kohei Ozaki (smly). 2017. “データ分析コンテストの技術と最近の進展 .” https://speakerdeck.com/smly/detafen-xi-kontesutofalseji-shu-tozui-jin-falsejin-zhan
大規模画像認識コンペティション「ILSVRC」 8 • 大規模画像データセット「ImageNet」を用いた画像認識のコンペ • 2010 年に開始し、2012 年に畳み込み層を用いた深層学習のモ デルが従来手法を圧倒的に凌駕する性能を叩き出した •
この事例は、昨今の深層学習研究の急速な発展に向けた転換点 とも言われている
機械学習コンペティションの貢献 (分類は [1] を参照) 9 • 特定の問題に適した予測モデリング手法の研究促進 ◦ ILSVRC や、映画推薦の「Netflix
Prize」 ◦ 最近の例だと、日本語質疑応答の「AI 王」[3] など ◦ 機械学習の利用に対する参入障壁の低減 • 予測モデリング手法の汎用性を報知する場の提供 ◦ 参加者が同一のデータセットで学習し、未知のデータセットで評価 • 実用上の知見の蓄積 ◦ 実装に当たっての勘所、論文で報告された手法の再検証 [3] https://sites.google.com/view/project-aio/home
Kaggle とは 10 • 2010 年設立の機械学習コンペのプラットフォーム。 2017 年に Google に買収された
• コンペ開催に必要なユーザ管理・順位表・スコア計算などの機能 を提供 ◦ 主催者は比較的手軽にコンペを開催可能に ◦ 参加者もより気軽に数多くのコンペに挑戦できるように • ユーザ数は 2020 年に 500 万人に達し、世界最大。日本からの 参加者も年々増えている
Kaggle のイメージ => Titanic ? 11 • Kaggle の入門として、タイタニック号を題材にしたコンペ [4]
が有名 • 扱うのは、右図に示すテーブル 形式のデータセット • サイズは総計で 93.08 kB [4] https://www.kaggle.com/c/titanic
データセットの種類別の推移 12 Kaggle 公開のデータセット「 Meta Kaggle」から作成したデータセットの種類別のコンペ数の推移( 2021 年 12 月時点で終了したコンペまでを対象に集計)
データセットのサイズ 13 • 画像を題材にしたコンペ ◦ Happywhale - Whale and Dolphin
Identification [5] : 62.06 GB • テーブル形式のデータセットでも増加傾向に ◦ H&M Personalized Fashion Recommendations [6] : 34.56 GB ※ 共に Kaggle で現在開催中 [5] https://www.kaggle.com/c/happy-whale-and-dolphin [6] https://www.kaggle.com/c/h-and-m-personalized-fashion-recommendations
GPU が必須になりつつある 14 • 処理を高速化するための GPU の利用は必須になりつつある • データセットの加工に GPU
を用いるライブラリも ◦ rapidsai / cudf [7] ◦ pfnet-research / xfeat [8] • TPU が利用される例もチラホラ [7] https://github.com/rapidsai/cudf [8] https://github.com/pfnet-research/xfeat
解き方が非自明な課題の増加 15 • データセットが最初からモデリング(model.fit)できる状態では提 供されないコンペも • 課題としては最終的な出力と評価指標が示され、どのように解く かは参加者が試行錯誤する余地がある • たとえば「NFL
Health & Safety - Helmet Assignment」[9] ◦ 詳細は優勝者の Qiita 記事参照 [10] [9] https://www.kaggle.com/c/nfl-health-and-safety-helmet-assignment/ [10] https://qiita.com/Kmat67916008/items/8ccf0171219036621540
シミュレーション・コンペティション 16 • 2020 年から、設定された環境下で戦うモデルを提出するシミュレー ション形式のコンペが登場 • 強化学習や、行動制御のために大量の条件文の記述、教師あり学習 の考え方で取り組む「模倣学習」といったアプローチが存在 •
サッカー・じゃんけん・街づくりなど、定期的にコンペが開催されている
Data-Centric AI 17 • モデリングではなくデータ加工に焦点を当てた「Data-Centric AI Competition」[11] (※ Kaggle 外での開催)
• 機械学習モデルの学習部分は固定で、データの前処理などを通じた 性能向上に取り組む [11] https://https-deeplearning-ai.github.io/data-centric-comp/
• まとめ ◦ データセットの形式がテーブル => 画像中心に ◦ データセットのサイズも増加し、GPU の必須になりつつある ◦
解き方が非自明な課題の増加 • 所感 ◦ データサイエンスの普及に伴い、ある程度解き方が明瞭な課題は企業が自 社内で処理できるようになってきた? 出題傾向の変化のまとめと所感 18
目次 19 • Kaggle での出題傾向の変化 • よりよい競争環境のための創意工夫 • 日本国内での動向
機械学習コンペティションのよくある課題 • 大量のモデルのアンサンブル ◦ 映画推薦のコンペ「Netflix Prize」では、最終的に賞金 100 万ドルを獲得し たモデルは 100
以上のモデルのアンサンブル ◦ Netflix によると、優勝したモデルはオフライン検証を通じた性能向上が実装 や運用の工数に見合わないという理由で、本番環境への導入が見送られた [12] • 評価用データセットの事前参照 ◦ 事前にデータセットの分布を確認できるという「特殊な」問題設定 20 [12] https://xamat.medium.com/on-the-usefulness-of-the-netflix-prize-403d360aaf2
Kaggle での創意工夫の例 21 • (前節で触れた)出題傾向の変化 • チーム人数の制限 • コード提出形式のコンペティション •
time-series API • Code の公開制限
チーム人数の制限 22 • Kaggle では 2018 年ごろから、チーム内の人数の上限が設定さ れるように ◦ 現在は
5 人の場合が多い ◦ 過度なアンサンブルへの警鐘、チームへの貢献がない参加者の抑制といっ た目的などがあると考えられている
コード提出形式のコンペティション 23 • Kaggle では計算資源の公平性や透過性のためにコードを提出して 実行する形式のコンペが一般的に • 処理時間の制限も設定 ◦ 推論時間のみの制限が多いが、過去には前処理を含めた場合も
• 最終的な評価に、未来のデータセットを使う場合も ◦ 実用面を勘案した解法になるような制度設計
time-series API 24 • Kaggle では独自の API を用いて、学習時に評価用データセット を参照できない仕組みを実現している事例も •
通常は推論がバッチ処理だが、ストリーム処理が必要に • 未知のデータセットへの対応力や省メモリ化・高速化など、実装力 を問われる場面も増えてきた [13] [13] https://docs.google.com/presentation/d/1tQPw_JwRTgRHNbvs3YJOab4PywsprREwR6fo58NfMGQ/
Code の公開制限 • Kaggle では時折、締め切り直前の高スコアの Code 公開が議論に なる ◦ 過去には終了数時間前に公開された
Code をそのままコピーして提出すればメ ダルが取れてしまった事例も [14] • 現在は対応策として、自制を促す警告が表示されている • コンペ終了 7 日前から Notebook の公開を禁止する規制を検討して いると明らかに [15] 25 [14] https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/discussion/56182 [15] https://www.kaggle.com/general/291540
目次 26 • Kaggle での出題傾向の変化 • よりよい競争環境のための創意工夫 • 日本国内での動向
[16] https://sinchir0.hatenablog.com/entry/2021/12/18/090325 日本勢の躍進 27 • コンペ上位に日本から の参加者がいるのは、 珍しくない状況に • Kaggle
ranking top 100 で最も多い国は日本 (2021 年 12 月時点) [16] NFL Health & Safety - Helmet Assignment の最終順位表 https://www.kaggle.com/c/nfl-health-and-safety-helmet-assignment/leaderboard
Kaggle Days Championship 28 • 2021 年から Kaggle が新たに始めたイベント [17]
• 12 カ所で 4 時間の短期間コンペを開催し、上位 3 チームが 2022 年秋にスペイン・バルセロナでの本戦に進出 • ここでも日本勢の活躍が目立つ [17] https://kaggledays.com/championship/
29 https://kaggledays.com/championship/leaderboard/
日本発のコンペティションサイト 30 • SIGNATE: 日本最大のコンペプラットフォーム • Nishika: 特許庁初となるコンペを開催 • ProbSpace:
優勝解法のピアレビュー制度が独特 • Solafune: 衛星データが専門 • atmaCup: Kaggle Master が運営 など
Kaggleを冠した書籍 (Amazon で検索) 31 • Kaggleで勝つデータ分析の技術 • Kaggleのチュートリアル第6版 • Kaggleで学んでハイスコアをたたき出す
! Python機械学習&データ分析 • 実践Data Scienceシリーズ PythonではじめるKaggleスタートブック • Pythonで動かして学ぶ! Kaggleデータ分析入門 • Kaggleコンペティション チャレンジブック • Kaggle Grandmasterに学ぶ 機械学習 実践アプローチ • データサイエンスの森 Kaggleの歩き方 • kaggleで上位に入るための探索的データ解析入門
石原が関わった書籍(2020, 2021) 32 https://book.mynavi.jp/ec/ products/detail/id=123641 https://www.kspub.co.jp/b ook/detail/5190067.html
2022 年秋、講談社より刊行予定 33 • テーマ:深層学習を用いた画像分類・画像検索・文章分類 • 著者 4 名での共著 ◦
Kaggle 全般・近年の潮流・頻出手法 など <= 石原 https://www.kaggle.com/sishihara ◦ 実践:画像分類 <= iwiwi さん https://www.kaggle.com/takiba ◦ 実践:画像検索 <= Kohei さん https://www.kaggle.com/confirm ◦ 実践:文章分類 <= flowlight さん https://www.kaggle.com/flowlight • 詳細が固まり次第告知 https://twitter.com/kspub_kodansha
まとめ 34 • Kaggleでの出題傾向の変化 • よりよい競争環境のための創意工夫 • 日本国内での動向