ν := n j=1 wj δxj . Then Fν flow is given by [g(t)](s) := Qµ0 (s) + 2 (s − Rs,0 ) t, t ∈ [ts,0 , ts,1 ), xs,j + 2 (s − Rs,j ) (t − ts,j ), t ∈ [ts,j , ts,j+1 ), Qν (s), t ≥ ts,|ℓs−ks| , where ts,0 := 0, ts,1 := xs,1 − Qµ0 (s) 2(s − Rs,0) , ts,j+1 := ts,j + xs,j+1 − xs,j 2(s − Rs,j ) , Qµ0 (s) ≤ Qν (s) Qµ0 (s) ≥ Qν (s) ℓs Wℓs−1 < s < Wℓs Wℓs−1 < s < Wℓs ks xks ≤ Qµ0 (s) < xks+1 xks−1 < Qµ0 (s) ≤ xks xs,j xks+j xks−j j ≤ |ℓs − ks | Rs,j Wks+j Wks−j−1 j ≤ |ℓs − ks | − 1 Viktor Stein W2 Gradient Flows of MMD functionals with Distance Kernel August 30th, 2024 17 / 22 −1 −0.5 0.5 1 1.5 2 1 2 3 µ0