Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning 5章後半
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Takahiro Kawashima
May 29, 2018
Science
0
170
Deep Learning 5章後半
ゼミの輪講資料.Goodfellow本5.5節〜5.11節
Takahiro Kawashima
May 29, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
350
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
240
論文紹介:Precise Expressions for Random Projections
wasyro
1
550
ガウス過程入門
wasyro
0
1k
論文紹介:Inter-domain Gaussian Processes
wasyro
0
190
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
370
機械学習のための行列式点過程:概説
wasyro
0
2k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.5k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.9k
Other Decks in Science
See All in Science
生成検索エンジン最適化に関する研究の紹介
ynakano
2
2k
検索と推論タスクに関する論文の紹介
ynakano
1
150
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
270
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
28k
2025-05-31-pycon_italia
sofievl
0
140
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
120
My Little Monster
juzishuu
0
560
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
Amusing Abliteration
ianozsvald
0
100
2025-06-11-ai_belgium
sofievl
1
220
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
The SEO identity crisis: Don't let AI make you average
varn
0
290
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Designing Experiences People Love
moore
144
24k
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Chasing Engaging Ingredients in Design
codingconduct
0
110
Thoughts on Productivity
jonyablonski
74
5k
Transcript
5 ষ: Machine Learning Basics ౡوେ May 29, 2018 ిؾ௨৴େֶ
ঙݚڀࣨ B4
࣍ 1. ࠷ਪఆ 2. ϕΠζ౷ܭ 3. ڭࢣ͋Γֶश 4. ڭࢣͳֶ͠श 5.
֬తޯ߱Լ๏ (SGD) 6. Deep Learning ͷಈػ 2
࠷ਪఆ
࠷ਪఆ ൘ॻͰΔ 3
ϕΠζ౷ܭ
ϕΠζ౷ܭ ൘ॻͰΔ 4
ڭࢣ͋Γֶश
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ෮श: ҰൠઢܗϞσϧ y = θT
x + ϵ ϵ ∼ N(ϵ|0, σ2) ⇒ p(y|x; θ) = N(y; θT x, σ2) (5.80) ਖ਼نͷఆٛҬ (−∞, ∞) ˠ {0, 1} ͷೋྨʹ͑ͳ͍ 5
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश લड़ͷཧ༝͔Β (0, 1) ͷҬΛͭؔΛߟ͍͑ͨ ˠγάϞΠυؔ f(x) = 1
1 + e−x 6
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ϩδεςΟ οΫճؼ p(y = 1|x; θ) = 1
1 + e−θT x = 1 1 + e−(θ0+θ1x1+θ2x2+··· ) ˠ {0, 1} ͷೋผʹ͑Δ 7
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ಛ্ۭؒͰઢܗՄೳͳೋྨΛߟ͑Δ ˠ͍Ζ͍Ζͳઢ (ฏ໘) ͷҾ͖ํ͕͋Δ 8
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) マージンを最大化 支持超平面 分類超平面 サポートベクトル ࢧ࣋ฏ໘ͷʮϚʔδϯʯΛ࠷େԽ͢ΔΑ͏ʹྨฏ໘Λֶश 9
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷํఔࣜ ax + by + c =
0 ͳͷͰ͜ΕΛҰൠԽͯ͠ɼྨฏ໘ͷํఔࣜαϙʔτϕΫτ ϧͷू߹ x∗ Λ༻͍ͯ w0 + wT x∗ = 0 ͱॻ͚Δɽֶश͢Δͷ͜ͷ w Ͱ͋Δ 2 ͭͷࢧ࣋ฏ໘ɼྨฏ໘Λ ±k ͚ͩͣΒͯ͠ w0 + wT x∗ = k w0 + wT x∗ = −k ⇒ |w0 + wT x∗| = k Ͱ͋Δ 10
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷࣜఆഒͯ͠ಉ͡ͷΛࣔ͢ͷͰɼֶश݁Ռ͕Ұҙ ʹఆ·Βͳ͍ ˠҰҙੑΛ࣋ͭΑ͏ʹ੍Λ՝͢ ੍: |w0 + wT
x∗| = 1 ॏΈϕΫτϧʹ͍ͭͯඪ४Խ͢Δͱ |w0 + wT x∗| ∥w∥ = 1 ∥w∥ ͜ΕΛ࠷େԽ͢ΔΑ͏ʹֶश͢Δ 11
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ͜Ε·ͰઢܗՄೳͳͷ ˠઢܗෆՄೳͳΛߟ͍͑ͨ ղܾࡦ: ಛʹඇઢܗมΛࢪͯ͠ผͷಛۭؒʹࣹӨ 12
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ྫ: ສ༗Ҿྗͷࣜ ಛ: ࣭ྔ m1, m2 ɼڑ
r f(m1, m2, r) = G m1m2 r2 ͜ΕΛ֤ಛʹؔͯ͠ઢܗʹ͍ͨ͠ ˠରΛͱΔ logf(m1, m2, r) = logG + logm1 + logm2 − logr2 ઢܗʹͳͬͨ 13
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ҰൠʹͱͷಛΑΓߴ࣍ݩͷۭࣹؒӨ͢Δ ˠֶशσʔλ͕ଟ͍ͱܭࢉྔ͕େʹͳΔ ˠ ΧʔωϧτϦοΫͱ͍͏ຐज़Λ༻͍Δͱখ͍͞ܭࢉྔͰߴ࣍ݩ (ແݶ࣍ݩ) ͷࣹӨΛධՁͰ͖Δ 14
ڭࢣͳֶ͠श
ڭࢣͳֶ͠श ओੳ ͬͨͷͰύε 15
ڭࢣͳֶ͠श ΫϥελϦϯά ΫϥελϦϯά ྨࣅͨ͠σʔλΛάϧʔϓʹྨ͢Δ 16
ڭࢣͳֶ͠श k-means ๏ ΞϧΰϦζϜ 1. Ϋϥελத৺ͷॳظͱͯ͠ɼσʔλ͔Β k ݸͷηϯτϩ ΠυΛϥϯμϜʹબͿ (k
ط) 2. ֤αϯϓϧΛ࠷͍ۙηϯτϩΠυʹׂΓͯΔ 3. ֤ηϯτϩΠυΛࣗʹׂΓͯΒΕͨσʔλͷத৺ʹҠಈ ͢Δ 4. 2,3 Λ܁Γฦ͢ 17
ڭࢣͳֶ͠श k-means ๏ σϞΛΕ http://tech.nitoyon.com/ja/blog/2013/11/07/k-means/ 18
ڭࢣͳֶ͠श ิ: k-means++๏ k-means ๏ॳظґଘੑ͕ඇৗʹߴ͍ ˠ֤ηϯτϩΠυͷॳظΛόϥόϥʹࢃ͘͜ͱͰվળ (k-means++๏) σϞΛΕ https://wasyro.github.io/k-meansppVisualizer/ 19
֬తޯ߱Լ๏ (SGD)
֬తޯ߱Լ๏ (SGD) ίετؔ (ςετ) σʔλ͝ͱͷଛࣦؔͷʹղͰ͖Δ͜ ͱ͕ଟ͍ ઢܗճؼͰɼର L(x, y, θ)
Λ༻͍ͯ J(θ) = Ex,y∼ˆ pdata [L(x, y, θ)] = 1 m m ∑ i=1 L(x(i), y(i), θ) (5.96) L(x(i), y(i), θ) = −logp(y|x, θ) ͜ͷίετؔʹؔͯ͠ɼύϥϝʔλ θ ʹ͍ͭͯޯ๏Λద༻ 20
֬తޯ߱Լ๏ (SGD) ∇θJ(θ) = ∇θ [ 1 m m ∑
i=1 L(x(i), y(i), θ) ] = 1 m m ∑ i=1 ∇θL(x(i), y(i), θ) (5.97) ͜ͷܭࢉྔ O(m) Ͱɼσʔλ͕૿͑Δͱ͔ͳΓͭΒ͍ ˠ֬తޯ߱Լ๏ (SGD) 21
֬తޯ߱Լ๏ (SGD) SGD ޯΛظͰදݱͰ͖Δͱߟ͑ɼαϯϓϧͷখ͍͞αϒ ηοτ (ϛχόον) ͷޯ๏Ͱۙࣅతʹٻ·Δͱ͢Δ B = {x(1),
. . . , x(m′)} ͷϛχόονΛҰ༷ϥϯμϜʹֶशσʔλ ηοτ͔Βͬͯ͘Δ m′ ͍͍ͩͨ 100ʙ300 ͘Β͍Ͱɼm ͕ଟͯ͘ಉ༷ ޯͷਪఆྔ g g = 1 m′ ∇θ m′ ∑ i=1 L(x(i), y(i), θ) (5.98) ύϥϝʔλͷਪఆྔ θ ← θ − ϵg 22
Deep Learning ͷಈػ
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛྔͷ࣍ݩ͕૿͑ΔͱࢦతʹऔΓ͏ΔΈ߹Θ͕ͤ૿͑Δ ্ਤ֤ಛ͕ͦΕͧΕ 10 ݸͷΛऔΓ͏Δ߹ͷ֓೦ਤ 23
Deep Learning ͷಈػ ࣍ݩͷढ͍ ྫͱͯ͠ k ۙ๏ (k-Nearest Neighbour) ͱ͍͏ֶशΞϧΰϦζϜ
Λߟ͑Δ k ۙ๏ ςετσʔλͷೖྗʹରͯ͠ɼಛ্ۭؒͰͬͱ͍ۙ k ݸ ͷֶशσʔλΛ୳͠ɼͦΕΒͷֶशσʔλͷଐ͢ΔΫϥεͷଟ ܾͰςετσʔλʹׂΓৼΔΫϥεΛܾఆ͢Δ k = 3 ͷ߹ ೖྗ˔ͷϥϕϧ˙ 24
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛۭؒͰσʔλ͕εΧεΧͰ k ۙ๏Ͱ͏·͍͔͘ͳͦ͞͏ ˠಉ༷ʹଟ͘ͷݹయతػցֶशख๏ͰଠଧͪͰ͖ͳ͘ͳΔ 25
References I [1] ਢࢁರࢤ, ϕΠζਪʹΑΔػցֶशೖ. ߨஊࣾ, 2017. [2] খాਸ, αϙʔτϕΫλʔϚγϯ.
ΦʔϜࣾ, 2007. [3] Sebastian Raschka ஶ, גࣜձࣾΫΠʔϓ༁, ୡਓσʔλαΠ ΤϯςΟετʹΑΔཧͱ࣮ફ Python ػցֶशϓϩάϥϛ ϯά, ΠϯϓϨε, 2016.