Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning 5章後半
Search
Takahiro Kawashima
May 29, 2018
Science
0
170
Deep Learning 5章後半
ゼミの輪講資料.Goodfellow本5.5節〜5.11節
Takahiro Kawashima
May 29, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
310
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
200
論文紹介:Precise Expressions for Random Projections
wasyro
1
510
ガウス過程入門
wasyro
0
820
論文紹介:Inter-domain Gaussian Processes
wasyro
0
180
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
360
機械学習のための行列式点過程:概説
wasyro
0
1.9k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.5k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.7k
Other Decks in Science
See All in Science
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
140
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
130
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
220
CV_5_3dVision
hachama
0
170
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
690
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
200
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
データベース03: 関係データモデル
trycycle
PRO
1
310
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
130
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
110
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
340
57k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
71
Thoughts on Productivity
jonyablonski
73
5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
A designer walks into a library…
pauljervisheath
210
24k
Practical Orchestrator
shlominoach
190
11k
Mobile First: as difficult as doing things right
swwweet
225
10k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Transcript
5 ষ: Machine Learning Basics ౡوେ May 29, 2018 ిؾ௨৴େֶ
ঙݚڀࣨ B4
࣍ 1. ࠷ਪఆ 2. ϕΠζ౷ܭ 3. ڭࢣ͋Γֶश 4. ڭࢣͳֶ͠श 5.
֬తޯ߱Լ๏ (SGD) 6. Deep Learning ͷಈػ 2
࠷ਪఆ
࠷ਪఆ ൘ॻͰΔ 3
ϕΠζ౷ܭ
ϕΠζ౷ܭ ൘ॻͰΔ 4
ڭࢣ͋Γֶश
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ෮श: ҰൠઢܗϞσϧ y = θT
x + ϵ ϵ ∼ N(ϵ|0, σ2) ⇒ p(y|x; θ) = N(y; θT x, σ2) (5.80) ਖ਼نͷఆٛҬ (−∞, ∞) ˠ {0, 1} ͷೋྨʹ͑ͳ͍ 5
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश લड़ͷཧ༝͔Β (0, 1) ͷҬΛͭؔΛߟ͍͑ͨ ˠγάϞΠυؔ f(x) = 1
1 + e−x 6
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ϩδεςΟ οΫճؼ p(y = 1|x; θ) = 1
1 + e−θT x = 1 1 + e−(θ0+θ1x1+θ2x2+··· ) ˠ {0, 1} ͷೋผʹ͑Δ 7
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ಛ্ۭؒͰઢܗՄೳͳೋྨΛߟ͑Δ ˠ͍Ζ͍Ζͳઢ (ฏ໘) ͷҾ͖ํ͕͋Δ 8
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) マージンを最大化 支持超平面 分類超平面 サポートベクトル ࢧ࣋ฏ໘ͷʮϚʔδϯʯΛ࠷େԽ͢ΔΑ͏ʹྨฏ໘Λֶश 9
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷํఔࣜ ax + by + c =
0 ͳͷͰ͜ΕΛҰൠԽͯ͠ɼྨฏ໘ͷํఔࣜαϙʔτϕΫτ ϧͷू߹ x∗ Λ༻͍ͯ w0 + wT x∗ = 0 ͱॻ͚Δɽֶश͢Δͷ͜ͷ w Ͱ͋Δ 2 ͭͷࢧ࣋ฏ໘ɼྨฏ໘Λ ±k ͚ͩͣΒͯ͠ w0 + wT x∗ = k w0 + wT x∗ = −k ⇒ |w0 + wT x∗| = k Ͱ͋Δ 10
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷࣜఆഒͯ͠ಉ͡ͷΛࣔ͢ͷͰɼֶश݁Ռ͕Ұҙ ʹఆ·Βͳ͍ ˠҰҙੑΛ࣋ͭΑ͏ʹ੍Λ՝͢ ੍: |w0 + wT
x∗| = 1 ॏΈϕΫτϧʹ͍ͭͯඪ४Խ͢Δͱ |w0 + wT x∗| ∥w∥ = 1 ∥w∥ ͜ΕΛ࠷େԽ͢ΔΑ͏ʹֶश͢Δ 11
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ͜Ε·ͰઢܗՄೳͳͷ ˠઢܗෆՄೳͳΛߟ͍͑ͨ ղܾࡦ: ಛʹඇઢܗมΛࢪͯ͠ผͷಛۭؒʹࣹӨ 12
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ྫ: ສ༗Ҿྗͷࣜ ಛ: ࣭ྔ m1, m2 ɼڑ
r f(m1, m2, r) = G m1m2 r2 ͜ΕΛ֤ಛʹؔͯ͠ઢܗʹ͍ͨ͠ ˠରΛͱΔ logf(m1, m2, r) = logG + logm1 + logm2 − logr2 ઢܗʹͳͬͨ 13
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ҰൠʹͱͷಛΑΓߴ࣍ݩͷۭࣹؒӨ͢Δ ˠֶशσʔλ͕ଟ͍ͱܭࢉྔ͕େʹͳΔ ˠ ΧʔωϧτϦοΫͱ͍͏ຐज़Λ༻͍Δͱখ͍͞ܭࢉྔͰߴ࣍ݩ (ແݶ࣍ݩ) ͷࣹӨΛධՁͰ͖Δ 14
ڭࢣͳֶ͠श
ڭࢣͳֶ͠श ओੳ ͬͨͷͰύε 15
ڭࢣͳֶ͠श ΫϥελϦϯά ΫϥελϦϯά ྨࣅͨ͠σʔλΛάϧʔϓʹྨ͢Δ 16
ڭࢣͳֶ͠श k-means ๏ ΞϧΰϦζϜ 1. Ϋϥελத৺ͷॳظͱͯ͠ɼσʔλ͔Β k ݸͷηϯτϩ ΠυΛϥϯμϜʹબͿ (k
ط) 2. ֤αϯϓϧΛ࠷͍ۙηϯτϩΠυʹׂΓͯΔ 3. ֤ηϯτϩΠυΛࣗʹׂΓͯΒΕͨσʔλͷத৺ʹҠಈ ͢Δ 4. 2,3 Λ܁Γฦ͢ 17
ڭࢣͳֶ͠श k-means ๏ σϞΛΕ http://tech.nitoyon.com/ja/blog/2013/11/07/k-means/ 18
ڭࢣͳֶ͠श ิ: k-means++๏ k-means ๏ॳظґଘੑ͕ඇৗʹߴ͍ ˠ֤ηϯτϩΠυͷॳظΛόϥόϥʹࢃ͘͜ͱͰվળ (k-means++๏) σϞΛΕ https://wasyro.github.io/k-meansppVisualizer/ 19
֬తޯ߱Լ๏ (SGD)
֬తޯ߱Լ๏ (SGD) ίετؔ (ςετ) σʔλ͝ͱͷଛࣦؔͷʹղͰ͖Δ͜ ͱ͕ଟ͍ ઢܗճؼͰɼର L(x, y, θ)
Λ༻͍ͯ J(θ) = Ex,y∼ˆ pdata [L(x, y, θ)] = 1 m m ∑ i=1 L(x(i), y(i), θ) (5.96) L(x(i), y(i), θ) = −logp(y|x, θ) ͜ͷίετؔʹؔͯ͠ɼύϥϝʔλ θ ʹ͍ͭͯޯ๏Λద༻ 20
֬తޯ߱Լ๏ (SGD) ∇θJ(θ) = ∇θ [ 1 m m ∑
i=1 L(x(i), y(i), θ) ] = 1 m m ∑ i=1 ∇θL(x(i), y(i), θ) (5.97) ͜ͷܭࢉྔ O(m) Ͱɼσʔλ͕૿͑Δͱ͔ͳΓͭΒ͍ ˠ֬తޯ߱Լ๏ (SGD) 21
֬తޯ߱Լ๏ (SGD) SGD ޯΛظͰදݱͰ͖Δͱߟ͑ɼαϯϓϧͷখ͍͞αϒ ηοτ (ϛχόον) ͷޯ๏Ͱۙࣅతʹٻ·Δͱ͢Δ B = {x(1),
. . . , x(m′)} ͷϛχόονΛҰ༷ϥϯμϜʹֶशσʔλ ηοτ͔Βͬͯ͘Δ m′ ͍͍ͩͨ 100ʙ300 ͘Β͍Ͱɼm ͕ଟͯ͘ಉ༷ ޯͷਪఆྔ g g = 1 m′ ∇θ m′ ∑ i=1 L(x(i), y(i), θ) (5.98) ύϥϝʔλͷਪఆྔ θ ← θ − ϵg 22
Deep Learning ͷಈػ
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛྔͷ࣍ݩ͕૿͑ΔͱࢦతʹऔΓ͏ΔΈ߹Θ͕ͤ૿͑Δ ্ਤ֤ಛ͕ͦΕͧΕ 10 ݸͷΛऔΓ͏Δ߹ͷ֓೦ਤ 23
Deep Learning ͷಈػ ࣍ݩͷढ͍ ྫͱͯ͠ k ۙ๏ (k-Nearest Neighbour) ͱ͍͏ֶशΞϧΰϦζϜ
Λߟ͑Δ k ۙ๏ ςετσʔλͷೖྗʹରͯ͠ɼಛ্ۭؒͰͬͱ͍ۙ k ݸ ͷֶशσʔλΛ୳͠ɼͦΕΒͷֶशσʔλͷଐ͢ΔΫϥεͷଟ ܾͰςετσʔλʹׂΓৼΔΫϥεΛܾఆ͢Δ k = 3 ͷ߹ ೖྗ˔ͷϥϕϧ˙ 24
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛۭؒͰσʔλ͕εΧεΧͰ k ۙ๏Ͱ͏·͍͔͘ͳͦ͞͏ ˠಉ༷ʹଟ͘ͷݹయతػցֶशख๏ͰଠଧͪͰ͖ͳ͘ͳΔ 25
References I [1] ਢࢁರࢤ, ϕΠζਪʹΑΔػցֶशೖ. ߨஊࣾ, 2017. [2] খాਸ, αϙʔτϕΫλʔϚγϯ.
ΦʔϜࣾ, 2007. [3] Sebastian Raschka ஶ, גࣜձࣾΫΠʔϓ༁, ୡਓσʔλαΠ ΤϯςΟετʹΑΔཧͱ࣮ફ Python ػցֶशϓϩάϥϛ ϯά, ΠϯϓϨε, 2016.