$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning 5章後半
Search
Takahiro Kawashima
May 29, 2018
Science
0
170
Deep Learning 5章後半
ゼミの輪講資料.Goodfellow本5.5節〜5.11節
Takahiro Kawashima
May 29, 2018
Tweet
Share
More Decks by Takahiro Kawashima
See All by Takahiro Kawashima
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
320
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
200
論文紹介:Precise Expressions for Random Projections
wasyro
1
520
ガウス過程入門
wasyro
0
870
論文紹介:Inter-domain Gaussian Processes
wasyro
0
190
論文紹介:Proximity Variational Inference (近接性変分推論)
wasyro
0
360
機械学習のための行列式点過程:概説
wasyro
0
1.9k
SOLVE-GP: ガウス過程の新しいスパース変分推論法
wasyro
1
1.5k
論文紹介:Stein Variational Gradient Descent
wasyro
0
1.7k
Other Decks in Science
See All in Science
NDCG is NOT All I Need
statditto
2
2.6k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
210
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
130
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
550
データマイニング - コミュニティ発見
trycycle
PRO
0
180
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
140
機械学習 - SVM
trycycle
PRO
1
940
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1k
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
It's Worth the Effort
3n
187
29k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Thoughts on Productivity
jonyablonski
73
5k
Building Adaptive Systems
keathley
44
2.9k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
BBQ
matthewcrist
89
9.9k
RailsConf 2023
tenderlove
30
1.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Done Done
chrislema
186
16k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
720
Transcript
5 ষ: Machine Learning Basics ౡوେ May 29, 2018 ిؾ௨৴େֶ
ঙݚڀࣨ B4
࣍ 1. ࠷ਪఆ 2. ϕΠζ౷ܭ 3. ڭࢣ͋Γֶश 4. ڭࢣͳֶ͠श 5.
֬తޯ߱Լ๏ (SGD) 6. Deep Learning ͷಈػ 2
࠷ਪఆ
࠷ਪఆ ൘ॻͰΔ 3
ϕΠζ౷ܭ
ϕΠζ౷ܭ ൘ॻͰΔ 4
ڭࢣ͋Γֶश
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ෮श: ҰൠઢܗϞσϧ y = θT
x + ϵ ϵ ∼ N(ϵ|0, σ2) ⇒ p(y|x; θ) = N(y; θT x, σ2) (5.80) ਖ਼نͷఆٛҬ (−∞, ∞) ˠ {0, 1} ͷೋྨʹ͑ͳ͍ 5
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश લड़ͷཧ༝͔Β (0, 1) ͷҬΛͭؔΛߟ͍͑ͨ ˠγάϞΠυؔ f(x) = 1
1 + e−x 6
ڭࢣ͋Γֶश ֬తڭࢣ͋Γֶश ϩδεςΟ οΫճؼ p(y = 1|x; θ) = 1
1 + e−θT x = 1 1 + e−(θ0+θ1x1+θ2x2+··· ) ˠ {0, 1} ͷೋผʹ͑Δ 7
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ಛ্ۭؒͰઢܗՄೳͳೋྨΛߟ͑Δ ˠ͍Ζ͍Ζͳઢ (ฏ໘) ͷҾ͖ํ͕͋Δ 8
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) マージンを最大化 支持超平面 分類超平面 サポートベクトル ࢧ࣋ฏ໘ͷʮϚʔδϯʯΛ࠷େԽ͢ΔΑ͏ʹྨฏ໘Λֶश 9
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷํఔࣜ ax + by + c =
0 ͳͷͰ͜ΕΛҰൠԽͯ͠ɼྨฏ໘ͷํఔࣜαϙʔτϕΫτ ϧͷू߹ x∗ Λ༻͍ͯ w0 + wT x∗ = 0 ͱॻ͚Δɽֶश͢Δͷ͜ͷ w Ͱ͋Δ 2 ͭͷࢧ࣋ฏ໘ɼྨฏ໘Λ ±k ͚ͩͣΒͯ͠ w0 + wT x∗ = k w0 + wT x∗ = −k ⇒ |w0 + wT x∗| = k Ͱ͋Δ 10
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ฏ໘ͷࣜఆഒͯ͠ಉ͡ͷΛࣔ͢ͷͰɼֶश݁Ռ͕Ұҙ ʹఆ·Βͳ͍ ˠҰҙੑΛ࣋ͭΑ͏ʹ੍Λ՝͢ ੍: |w0 + wT
x∗| = 1 ॏΈϕΫτϧʹ͍ͭͯඪ४Խ͢Δͱ |w0 + wT x∗| ∥w∥ = 1 ∥w∥ ͜ΕΛ࠷େԽ͢ΔΑ͏ʹֶश͢Δ 11
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ͜Ε·ͰઢܗՄೳͳͷ ˠઢܗෆՄೳͳΛߟ͍͑ͨ ղܾࡦ: ಛʹඇઢܗมΛࢪͯ͠ผͷಛۭؒʹࣹӨ 12
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ྫ: ສ༗Ҿྗͷࣜ ಛ: ࣭ྔ m1, m2 ɼڑ
r f(m1, m2, r) = G m1m2 r2 ͜ΕΛ֤ಛʹؔͯ͠ઢܗʹ͍ͨ͠ ˠରΛͱΔ logf(m1, m2, r) = logG + logm1 + logm2 − logr2 ઢܗʹͳͬͨ 13
ڭࢣ͋Γֶश αϙʔτϕΫλʔϚγϯ (SVM) ҰൠʹͱͷಛΑΓߴ࣍ݩͷۭࣹؒӨ͢Δ ˠֶशσʔλ͕ଟ͍ͱܭࢉྔ͕େʹͳΔ ˠ ΧʔωϧτϦοΫͱ͍͏ຐज़Λ༻͍Δͱখ͍͞ܭࢉྔͰߴ࣍ݩ (ແݶ࣍ݩ) ͷࣹӨΛධՁͰ͖Δ 14
ڭࢣͳֶ͠श
ڭࢣͳֶ͠श ओੳ ͬͨͷͰύε 15
ڭࢣͳֶ͠श ΫϥελϦϯά ΫϥελϦϯά ྨࣅͨ͠σʔλΛάϧʔϓʹྨ͢Δ 16
ڭࢣͳֶ͠श k-means ๏ ΞϧΰϦζϜ 1. Ϋϥελத৺ͷॳظͱͯ͠ɼσʔλ͔Β k ݸͷηϯτϩ ΠυΛϥϯμϜʹબͿ (k
ط) 2. ֤αϯϓϧΛ࠷͍ۙηϯτϩΠυʹׂΓͯΔ 3. ֤ηϯτϩΠυΛࣗʹׂΓͯΒΕͨσʔλͷத৺ʹҠಈ ͢Δ 4. 2,3 Λ܁Γฦ͢ 17
ڭࢣͳֶ͠श k-means ๏ σϞΛΕ http://tech.nitoyon.com/ja/blog/2013/11/07/k-means/ 18
ڭࢣͳֶ͠श ิ: k-means++๏ k-means ๏ॳظґଘੑ͕ඇৗʹߴ͍ ˠ֤ηϯτϩΠυͷॳظΛόϥόϥʹࢃ͘͜ͱͰվળ (k-means++๏) σϞΛΕ https://wasyro.github.io/k-meansppVisualizer/ 19
֬తޯ߱Լ๏ (SGD)
֬తޯ߱Լ๏ (SGD) ίετؔ (ςετ) σʔλ͝ͱͷଛࣦؔͷʹղͰ͖Δ͜ ͱ͕ଟ͍ ઢܗճؼͰɼର L(x, y, θ)
Λ༻͍ͯ J(θ) = Ex,y∼ˆ pdata [L(x, y, θ)] = 1 m m ∑ i=1 L(x(i), y(i), θ) (5.96) L(x(i), y(i), θ) = −logp(y|x, θ) ͜ͷίετؔʹؔͯ͠ɼύϥϝʔλ θ ʹ͍ͭͯޯ๏Λద༻ 20
֬తޯ߱Լ๏ (SGD) ∇θJ(θ) = ∇θ [ 1 m m ∑
i=1 L(x(i), y(i), θ) ] = 1 m m ∑ i=1 ∇θL(x(i), y(i), θ) (5.97) ͜ͷܭࢉྔ O(m) Ͱɼσʔλ͕૿͑Δͱ͔ͳΓͭΒ͍ ˠ֬తޯ߱Լ๏ (SGD) 21
֬తޯ߱Լ๏ (SGD) SGD ޯΛظͰදݱͰ͖Δͱߟ͑ɼαϯϓϧͷখ͍͞αϒ ηοτ (ϛχόον) ͷޯ๏Ͱۙࣅతʹٻ·Δͱ͢Δ B = {x(1),
. . . , x(m′)} ͷϛχόονΛҰ༷ϥϯμϜʹֶशσʔλ ηοτ͔Βͬͯ͘Δ m′ ͍͍ͩͨ 100ʙ300 ͘Β͍Ͱɼm ͕ଟͯ͘ಉ༷ ޯͷਪఆྔ g g = 1 m′ ∇θ m′ ∑ i=1 L(x(i), y(i), θ) (5.98) ύϥϝʔλͷਪఆྔ θ ← θ − ϵg 22
Deep Learning ͷಈػ
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛྔͷ࣍ݩ͕૿͑ΔͱࢦతʹऔΓ͏ΔΈ߹Θ͕ͤ૿͑Δ ্ਤ֤ಛ͕ͦΕͧΕ 10 ݸͷΛऔΓ͏Δ߹ͷ֓೦ਤ 23
Deep Learning ͷಈػ ࣍ݩͷढ͍ ྫͱͯ͠ k ۙ๏ (k-Nearest Neighbour) ͱ͍͏ֶशΞϧΰϦζϜ
Λߟ͑Δ k ۙ๏ ςετσʔλͷೖྗʹରͯ͠ɼಛ্ۭؒͰͬͱ͍ۙ k ݸ ͷֶशσʔλΛ୳͠ɼͦΕΒͷֶशσʔλͷଐ͢ΔΫϥεͷଟ ܾͰςετσʔλʹׂΓৼΔΫϥεΛܾఆ͢Δ k = 3 ͷ߹ ೖྗ˔ͷϥϕϧ˙ 24
Deep Learning ͷಈػ ࣍ݩͷढ͍ ಛۭؒͰσʔλ͕εΧεΧͰ k ۙ๏Ͱ͏·͍͔͘ͳͦ͞͏ ˠಉ༷ʹଟ͘ͷݹయతػցֶशख๏ͰଠଧͪͰ͖ͳ͘ͳΔ 25
References I [1] ਢࢁರࢤ, ϕΠζਪʹΑΔػցֶशೖ. ߨஊࣾ, 2017. [2] খాਸ, αϙʔτϕΫλʔϚγϯ.
ΦʔϜࣾ, 2007. [3] Sebastian Raschka ஶ, גࣜձࣾΫΠʔϓ༁, ୡਓσʔλαΠ ΤϯςΟετʹΑΔཧͱ࣮ફ Python ػցֶशϓϩάϥϛ ϯά, ΠϯϓϨε, 2016.