Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
opentelemetry-goとGCPでパフォーマンス解析
Search
Yohei Iino
July 26, 2022
Technology
0
120
opentelemetry-goとGCPでパフォーマンス解析
opentelemetry-goとGCPでパフォーマンス解析
Yohei Iino
July 26, 2022
Tweet
Share
More Decks by Yohei Iino
See All by Yohei Iino
1年半放置したExpo製アプリを最新化してみた
wheatandcat
0
54
作成中のFlutterアプリの中間発表
wheatandcat
0
49
最近読んだ技術書を簡単紹介
wheatandcat
0
70
ユニバーサルリンク/アプリリンクを使ってQRコードでゲストログインできるようにする
wheatandcat
0
150
Firebase App Checkを実装したので紹介
wheatandcat
0
150
PlanetScaleの無料プランがなくなるので、NeonとTiDBを試してみた
wheatandcat
0
310
Flutter HooksとRiverpodの解説
wheatandcat
0
430
T3 Stack(応用編: Next Auth & SSRの実装紹介)
wheatandcat
1
350
App Routerの紹介
wheatandcat
0
100
Other Decks in Technology
See All in Technology
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
150
How to achieve interoperable digital identity across Asian countries
fujie
0
120
スタートアップにおけるこれからの「データ整備」
shomaekawa
1
240
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
1k
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
25
17k
SOC2取得の全体像
shonansurvivors
1
410
From Prompt to Product @ How to Web 2025, Bucharest, Romania
janwerner
0
120
AIが書いたコードをAIが検証する!自律的なモバイルアプリ開発の実現
henteko
1
350
「Verify with Wallet API」を アプリに導入するために
hinakko
1
250
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
4
630
about #74462 go/token#FileSet
tomtwinkle
1
420
生成AI_その前_に_マルチクラウド時代の信頼できるデータを支えるSnowflakeメタデータ活用術.pdf
cm_mikami
0
120
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Agile that works and the tools we love
rasmusluckow
331
21k
Making Projects Easy
brettharned
119
6.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Producing Creativity
orderedlist
PRO
347
40k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
The Pragmatic Product Professional
lauravandoore
36
6.9k
Build your cross-platform service in a week with App Engine
jlugia
232
18k
Transcript
opentelemetry-go とGCP でパフォーマンス解析 Press Space for next page
自己紹介 📝 飯野陽平(wheatandcat ) 🏢 フリーランスエンジニア(シェアフル株式会社CTO ) 💻 Blog: https://www.wheatandcat.me/
🛠 今までに作ったもの memoir ペペロミア Atomic Design Check List
OpenTelemetry とは OpenTelemetry は、オープンソースのオブザーバビリティフレームワーク 運用しているアプリのパフォーマンスや健全性が正常な状態か判断するために使用する情報をテレメトリーデータ と呼ばれている テレメトリーデータは主に3 つのカテゴリに分類される ログ メトリクス
トレース OpenTelemetry は、それらのテレメトリデータを収集するためのベンダーに依存しないAPI 、ソフトウェア開発キッ ト(SDK) 、その他のツールを提供している Learn More 1 Learn More 2
opentelemetry-go リポジトリ: opentelemetry-go OpenTelemetry は、OpenCensus (+ Stackdriver )、OpenTracing のプロジェクトの正式な後継版 検索時に以下のリポジトリで実装されたものもヒットするが、これから実装するならopentelemetry-go
が推奨なの で注意 opencensus-go opentracing-go
対応のパッケージのサンプル OpenTelemetry のGitHub に言語ごとにリポジトリが作成されている https://github.com/open-telemetry?q=go&type=all&language=&sort= Go 言語なら以下を確認 opentelemetry-go-contrib Go のフレームワークなら以下を確認
https://github.com/open-telemetry/opentelemetry-go-contrib/tree/main/instrumentation/github.com
実装してみた① 実際にプロジェクトにopentelemetry-go を実装したみた。 構成は以下の通り プロジェクト: memoir-backend フレームワーク: gqlgen ベンダー: Cloud
Trace 最初はDatadog のAPM を想定していたが、Cloud Run For Manager をサポートしていなかったので😓、 Cloud Trace で実装
実装してみた② PR https://github.com/wheatandcat/memoir-backend/pull/128 以下を解説 gqlgen のトレースのハンドリングの解説 Cloud Trace の出力のデモ
Cloud Trace を実装してみての感想と課題 トレース情報が可視化されて、各 API の処理速度を直感的にわかるようになった 今回のプロジェクトはAPI の数も少ないのでトレース情報のみでも十分に解析可能だが、以下のようなケースでは別 のアプローチを考える必要がある トレース情報が大雑把すぎる。具体的に遅い処理を検知したい
API や処理数が膨大で漠然と全体的に遅い ユーザーによって処理が遅い 上記のケースではCloud Profiler が有効なので紹介
Cloud Profiler とは Cloud Profiler は、本番環境のアプリケーションからCPU 使用率やメモリ割り当てなどの情報を継続的に収集できる サービス トレースのような大雑把な情報は出力できないが、ピンポイントにボトルネックになっている処理の検知が行える 料金は無料なので、取り敢えず実装しておいても損は無さそう
Learn More
実装してみた 以下を参考に実装 https://cloud.google.com/profiler/docs/profiling-go?hl=ja 以下を解説 Cloud Profiler のデモ memoir-backend は処理がシンプル過ぎて、解説向きの情報が無いので以下で解説 以下を参考に実際の利用方法の解説
チュートリアル: Go アプリの最適化
おまけ 今回、実装までは行わなかったが、今回紹介したCloud Trace とCloud Profiler などの情報をまとめて、Cloud Monitoring でアラートもできそう https://cloud.google.com/architecture/integrating-monitoring-logging-trace-observability-and-alerting? hl=ja
Cloud Monitoring の説明は以下を参照 https://cloud.google.com/monitoring/monitor-compute-engine-virtual-machine
まとめ OpenTelemetry は現状デファクトなので、理解しておいたほうが良さそう パフォーマンス解析のアプローチについて理解できた 早くDatadog のAPM がCloud Run For Manager
をサポートして欲しい GKE 構成にすれば使えるけど、個人プロジェクトで、そこまで管理コストをかけたくない 😓
ご清聴ありがとうございました