Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[CS Foundation] AIML - 2 - Regression
Search
x-village
August 14, 2018
Programming
1
48
[CS Foundation] AIML - 2 - Regression
x-village
August 14, 2018
Tweet
Share
More Decks by x-village
See All by x-village
[CS Foundation] Web - 6 - Flask Introduction
xvillage
0
190
[CS Foundation] AIML - 5 - Deep Learning
xvillage
1
100
[CS Foundation] Web - 7 - CRUD in Flask
xvillage
0
100
[CS Foundation] Web - 4 - JavaScript Web Course
xvillage
0
23
[CS Foundation] Web - 5 - Database
xvillage
0
43
[CS Foundation] AIML - 3 - Common Issue
xvillage
1
150
[CS Foundation] AIML - 4 - Classification
xvillage
0
39
[CS Foundation] Web - 1 - Web Course intro
xvillage
2
23
[CS Foundation] Web - 2 - HTML and CSS Web Course
xvillage
0
42
Other Decks in Programming
See All in Programming
iOS 26にアップデートすると実機でのHot Reloadができない?
umigishiaoi
0
140
「App Intent」よくわからんけどすごい!
rinngo0302
1
100
CDK引数設計道場100本ノック
badmintoncryer
2
480
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
230
ソフトウェア設計とAI技術の活用
masuda220
PRO
17
3.7k
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
3
580
テストから始めるAgentic Coding 〜Claude Codeと共に行うTDD〜 / Agentic Coding starts with testing
rkaga
15
5.6k
AI コーディングエージェントの時代へ:JetBrains が描く開発の未来
masaruhr
1
200
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
13k
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
170
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
280
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
320
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
How to Ace a Technical Interview
jacobian
278
23k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
A better future with KSS
kneath
238
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
750
How to train your dragon (web standard)
notwaldorf
96
6.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
AI/ML - Regression Lo Pang-Yun Ting X-Village
Outline • Introduction of regression • Linear regression • Gradient
descent • Ordinary least square 2
Unsupervised Learning (非監督式學習) Supervised Learning (監督式學習) Machine Learning 聚類 分類
迴歸 降維 3
Machine Learning 聚類 分類 迴歸 降維 4
Machine Learning • Classification(分類) v.s. Regression(迴歸) Lv. 1 Lv. 1
Man! Q1:超人是否能 打敗Lv. 1怪物? 5 Seven! Neos! Man! Taro! Tiga! Q2:需要幾位超人才能 打敗Lv.1怪物?
Regression 6 • What is ‘regression’ analysis (迴歸分析)? 是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、 相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變
數。(from wiki)
Regression • What is ‘regression’ analysis? 怪物等級 1 2 3
4 5 6 7 8 9 10 打敗怪物所需超人數量 1 1 2 3 6 7 11 13 13 15 7
Regression • What is ‘regression’ analysis? 8 怪物等級 打敗怪物所需超人數量 找出曲線/直線來擬合數據
Regression Features: x(i) = [x 1, … x d ]
Outputs: y(i) linear regression (線性迴歸) polynomial regression (多項式迴歸) 9
Linear Regression • Model representation • Hypothesis(假說) : maps from
X to Y Choose θ so that h θ (x) is close to y for training examples Training examples 10 Weigh t
Linear Regression • How to choose θ ? Find lines/hyperplanes
with small error 11
Linear Regression • Definition of cost function 預測 真實 誤差
mean square error (MSE) Cost Function J(θ 0 , θ 1 ) minimize J(θ 0 , θ 1 ) 12 h θ (x) Hypothesis
Linear Regression • Look into cost function x 1 y
0 1 2 3 0 1 2 3 θ 0 = 0 Simplified 13 Goal Hypothesis Weights Cost function minimize Goal Hypothesis Weights Cost function minimize
Linear Regression x 1 y 0 1 2 3 0
1 2 3 • Look into cost function 0 0.5 1 1.5 0 1 2 3 J(θ 1 ) θ 1 = 1 Hypothesis Cost function 2 2.5 θ 1 θ 1 = 0.5 θ 1 = 1.5 14 (02 + 02 + 02) 1 2 x 3 J(1) = ((0.5 - 1)2 + (1 - 2)2 + (1.5 - 3)2) 1 2 x 3 J(0.5) = ≈ 0.58 ((1.5 - 1)2 + (1 - 2)2 + (0.5 - 3)2) 1 2 x 3 J(1.5) = ≈ 0.58 = 0
Linear Regression x 1 y 0 1 2 3 0
1 2 3 • Look into cost function 0 0.5 1 1.5 0 1 2 3 J(θ 1 ) θ 1 = 1 Hypothesis Cost function 2 2.5 θ 1 θ 1 = 0.5 θ 1 = 1.5 15
Linear Regression • Look into cost function 16 θ 1
θ 0 J(θ 0, θ 1 )
• Look into cost function J(θ 0, θ 1 )
θ 1 θ 0 17 Linear Regression
Minimize The Cost Function
Linear Regression • Optimize linear regression • Gradient descent •
Ordinary least square 19
Linear Regression • Optimize linear regression • Gradient descent •
Ordinary least square 20
• Gradient descent (梯度下降法) Gradient Descent 21 Cost function J(θ
0, θ 1 ) Goal J(θ 0, θ 1 ) minimize OUTLINE • Start with some θ 0 , θ 1 • Keep changing θ 0 , θ 1 to reduce J(θ 0, θ 1 ) until we hopefully end up at a minimum
repeat until convergence { } • Gradient descent alogrithm Gradient
Descent 22 Learning rate Assign value from right side to left side
• Gradient descent alogrithm Gradient Descent 23
• Gradient descent intuition Gradient Descent 24 J(θ 1 )
θ 1 · (positive value) Positive Slope repeat until convergence { } 當前 θ 值所處點的 切線斜率 θ 1 Current value θ 1 becomes smaller Cost becomes smaller
• Gradient descent intuition Gradient Descent 25 J(θ 1 )
θ 1 · (negative value) Negative Slope repeat until convergence { } 當前 θ 值所處點的 切線斜率 θ 1 Current value θ 1 becomes bigger Cost becomes smaller
• Gradient descent intuition Gradient Descent 26 J(θ 1 )
θ 1 repeat until convergence { } Learning rate If learning rate is too big It may fail to converge or even diverge θ 1 Current value
• Gradient descent intuition Gradient Descent 27 J(θ 1 )
θ 1 repeat until convergence { } Learning rate If learning rate is too small Gradient descent can be slow θ 1 Current value
Exercise - (1) • TASK: Implement linear regression • Sample
code 28
Exercise - (1) • Requirements 1. 完成 hypothesis function 和
cost function 29 Hypothesis Cost function
Exercise - (1) • Requirements 2. 分別測試 (θ 0 θ
1 ) = (0, 0), (1, 1), (10, -1),印出算出的cost值 3. 觀察不同 θ 值所得到的regression line和cost之間的關係 30
Exercise - (1) • Output 31
Linear Regression • Optimize linear regression • Gradient descent •
Ordinary least square 32
Ordinary Least Square • Ordinary least square (最小平方法/最小二乘法) 33 repeat
until convergence { } Solve Gradient descent Cost function OLS
Ordinary Least Square • OLS v.s. Gradient descent 34 Gradient
descent OLS θ 1 Initial value 直接求最佳解 迭代計算求最佳解
Example • sklearn - LinearRegression 35 Use OLS to optimize
linear regression
Example • sklearn - SGDRegressor 36 Use Gradient descent to
optimize linear regression
Evaluation 37 • Framework Evaluation results
Evaluation • Evaluation metrics for regression 38
Evaluation • Evaluation metrics for regression 39 • Mean square
error (MSE) • Root mean square error (RMSE) • Mean absolute error (MAE) 預測 真實 • 預測值和真實值的差值 • 越小越好
Evaluation • Evaluation metrics for regression 40 • R-squared score
(R2 score) • 預測值和真實數據的擬合程度 • 最佳值為1
Example • sklearn - mean_squared_error, mean_absolute_error, r2_score 41
Exercise - (2) • TASK: Use sklearn to implement linear
regression • Sample code • Requirements • 使用 Exercise - (1) 的數據來訓練LinearRegression( ) and SGDRegressor( ) • 印出兩種方法訓練完後得到的weight值 (θ) • 觀察兩種方法的結果 42
Exercise - (3) 43 • TASK: Use sklearn.metrics to evaluate
models • Requirements • 印出Exercise - (2)兩個models的RMSE (測試的資料先用training data替代)
Exercise - (3) 44 • Output